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Introduction Approach

Contribution: We propose Particle Filtering Policy Network (PFPN) as a PFPN employs a fixed number of particles ,-"" o Y Resampling. To address the 1ssue of particle degeneracy, where the
substitute to Gaussian-based action policy network for improving control for (color dots) on each action dimension. . _______ X\/\ assoclated weight of a particle decrease to near zero and thus have no chance
physically simulated characters using reinforcement learning. Particles have learnable locations optimized /\/\/\/\/\ ) J/\AZ\ ' J AZ\ to be activated any more, we adopt the resampling 1dea from particle filtering
PFPN through sampling from unimodal Gaussians. - —— — — — ®—@- — 00— duplication - ——0-0— literature, and reactivate the degenerate particle by duplicating a target
. . . . . The policy network learns the weights through particles P particle, which 1s chosen by resampling from those alive ones.
— can help better action space exploration, leading to sampling efficient hioh the stateind dent t ﬁl I
.. . whic ¢ state-independent components - . . . . ..
training and exhibiting better robustness when applied to control tasks for , P , P weights III I I particle weight I Our resampling strategy adds small noise when performing duplication and,
. . . | represented by particles are mixed together. _ _ equalization : . . . . .
highly-articulated characters with many degrees of freedom. Policy degeneracy q Policy therefore, brings about more diversity for better action space exploration.
—_is a general approach without changing the underlying architecture of During training, particles can move along Network Network Network Meanwhile, by weight equalization, we guarantee that the overall policy
. . : : : : their action dimensions towards different q q distribution would not change too much before and after resampling, thus
training models or learning algorithms, and applicable to both on-policy and T | . - I Training Resampling T o 1o f ! ping
off-policy reinforcement algorithms. direction and provide an expressive, multi- guaranteeing the training stability.
modal distribution over the continuous space. Sy 5
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PEFPN 1s a great alternative to Gaussian-based action policies for physically
. simulated character control tasks. It exhibits better learning performance and
- al higher motion quality in both on-policy and off-
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Code Available on 1'-1!.
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