
Learning to Ball: Composing Policies for Long-Horizon Basketball Moves
PEI XU, Stanford University, USA
ZHEN WU, Stanford University, USA
RUOCHENG WANG, Stanford University, USA
VISHNU SARUKKAI, Stanford University, USA
KAYVON FATAHALIAN, Stanford University, USA
IOANNIS KARAMOUZAS, University of California, Riverside, USA
VICTOR ZORDAN, Roblox, USA and Clemson University, USA
C. KAREN LIU, Stanford University, USA

Fig. 1. We introduce a novel policy integration framework to enable the composition of drastically different motor skills in multi-phase, long-horizon tasks,
among them, shoot-off-the-dribble, catch-and-shoot, and board-and-bang (grabbing an offensive rebound and scoring immediately).

Learning a control policy for a multi-phase, long-horizon task, such as basket-

ball maneuvers, remains challenging for reinforcement learning approaches

due to the need for seamless policy composition and transitions between

skills. A long-horizon task typically consists of distinct subtasks with well-

defined goals, separated by transitional subtasks with unclear goals but

critical to the success of the entire task. Existing methods like the mixture of

experts and skill chaining struggle with tasks where individual policies do

not share significant commonly explored states or lack well-defined initial

and terminal states between different phases. In this paper, we introduce a

novel policy integration framework to enable the composition of drastically

different motor skills in multi-phase long-horizon tasks with ill-defined in-

termediate states. Based on that, we further introduce a high-level soft router

to enable seamless and robust transitions between the subtasks. We evaluate

our framework on a set of fundamental basketball skills and challenging

transitions. Policies trained by our approach can effectively control the sim-

ulated character to interact with the ball and accomplish the long-horizon

task specified by real-time user commands, without relying on ball trajectory

references.

Authors’ Contact Information: Pei Xu, Stanford University, USA, peixu@stanford.edu;

ZhenWu, Stanford University, USA; RuochengWang, Stanford University, USA; Vishnu

Sarukkai, Stanford University, USA; Kayvon Fatahalian, Stanford University, USA;

Ioannis Karamouzas, University of California, Riverside, USA; Victor Zordan, Roblox,

USA and Clemson University, USA; C. Karen Liu, Stanford University, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7368/2025/12-ART233

https://doi.org/10.1145/3763367

CCS Concepts: • Computing methodologies → Animation; Physical
simulation; Reinforcement learning.

Additional Key Words and Phrases: character animation, physics-based

control, motion synthesis, hierarchical reinforcement learning

ACM Reference Format:
Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian,

Ioannis Karamouzas, Victor Zordan, and C. Karen Liu. 2025. Learning to Ball:

Composing Policies for Long-Horizon Basketball Moves. ACM Trans. Graph.
44, 6, Article 233 (December 2025), 23 pages. https://doi.org/10.1145/3763367

1 Introduction
Many real-world tasks consist of complex objectives that can be

broken down into sequences of differing subtasks. Successfully exe-

cuting these multi-phase, long-horizon tasks demands the mastery

of heterogeneous skills and the ability to transition seamlessly be-

tween them. Basketball provides a compelling example of these

challenges. For example, a fundamental maneuver, “shoot-off-the-

dribble”, involves distinct subtasks such as dribbling, gathering the

ball and shooting, as well as the ability to transition between these

skills, ultimately culminating in the ball successfully going into the

hoop. However, while dribble and shoot are characterized by well-

defined stand-alone goals, gather acts largely as a transition subtask

with poorly defined starting and ending states. Thus, executing such

multi-phase tasks challenges control methods proposed to date.

Reinforcement learning (RL) has shown promise in training poli-

cies for individual skills for physics-based character control [Chen-

tanez et al. 2018; Kwiatkowski et al. 2022; Peng et al. 2018a; Shi

et al. 2023; Yin et al. 2021], but composing these policies into a co-

hesive framework remains an open problem. Previous approaches

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

ar
X

iv
:s

ub
m

it/
68

02
78

0
 [

cs
.G

R
]

 2
5

Se
p

20
25

https://orcid.org/0000-0001-7851-3971
https://orcid.org/0009-0006-7800-9314
https://orcid.org/0009-0005-8404-6405
https://orcid.org/0009-0006-9809-9994
https://orcid.org/0000-0001-8754-0429
https://orcid.org/0009-0000-4315-6556
https://orcid.org/0000-0002-7309-7013
https://orcid.org/0000-0001-5926-0905
https://orcid.org/0000-0001-7851-3971
https://orcid.org/0009-0006-7800-9314
https://orcid.org/0009-0005-8404-6405
https://orcid.org/0009-0006-9809-9994
https://orcid.org/0009-0006-9809-9994
https://orcid.org/0000-0001-8754-0429
https://orcid.org/0009-0000-4315-6556
https://orcid.org/0000-0002-7309-7013
https://orcid.org/0000-0001-5926-0905
https://doi.org/10.1145/3763367
https://doi.org/10.1145/3763367

233:2 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

have attempted to address this through methods like a mixture of

experts [Peng et al. 2018b; Won et al. 2020]. However, this tech-

nique relies on sufficiently exploring shared states across individual

policies—a condition that does not hold for tasks like dribbling and

shooting. Another line of work known as skill chaining [Chen et al.

2023a; Clegg et al. 2018; Konidaris and Barto 2009; Lee et al. 2021;

Liu and Hodgins 2017] allows concatenation of policies but requires

each skill to have a well-defined set of terminal states. This limita-

tion renders it ineffective for intermediate tasks where the subtask’s

goal depends on the context of the subsequent policy. For example,

the gathering motion between dribbling and shooting can be intu-

itively described as “bringing the agent to a state where shooting is

possible.” However, crafting a reward function based solely on state

or action variables to reflect this goal is challenging.

To tackle the problem of building policies for ill-defined, interme-

diate subtasks, we introduce a policy integration method to compose

drastically different and/or ill-defined skills to achieve a multi-phase,

long-horizon task. The core idea is to first train policies for well-

defined subtasks independently and then use these policies to guide

the training of the ambiguous, intermediate subtasks. Specifically,

for a task sequence consisting of subtasks A, B, and C, where A

and C have well-defined task goals but B does not, we train B us-

ing policy A to define a valid initial state distribution and policy

C’s state value function to shape the terminal reward. To further

improve the transition between B and C, we simultaneously adapt

the pretrained policy C to the states generated by B under training.

In this process, a state value estimator optimized in tandem with

the adapted C will be provided to reflect the up-to-date state value

evaluation for policy B optimization. With the primitive policies

for all subtasks in place, we finally train a high-level soft-routing

policy that directs the execution of those primitive policies based

on real-time external commands, such as dribbling destination and

velocity, or a jump-shot action.

Another challenging aspect in learning policies for multi-phase,

long-horizon tasks is the heterogeneity of movement that demands

diverse and extensive human motion data. Previous work on basket-

ball motion synthesis has demonstrated compelling results when

using structured data with corresponding full body, fingers, and

basketball movements for physics-based character control [Liu and

Hodgins 2018; Starke et al. 2020; Wang et al. 2023, 2024e]. How-

ever, such a special dataset is hard to scale for training a general

policy capable of performing under a wide array of conditions. In

our work, instead, we demonstrate the generation of policies from

unstructured data. We leverage a diverse collection of basketball

motion data, including full-body motions without hands, and hand-

only motions, as well as motion examples from unstructured videos.

To enrich locomotion behaviors, some normal running motions

are also included. Our method makes no assumptions about the

correspondence across datasets or availability of ball trajectories.

Our results show that the proposed method enables the agent to

perform smooth and coordinated basketball maneuvers, from gross

body movements to fine finger actions, while responding adaptively

to user commands. The agent can freely play basketball in real-

time—for instance, dribbling to any location at variable speeds and

finishing with a jump shot from any direction, achieving a shooting

accuracy of 91.8% on a professional court. We further demonstrate

team play with multiple agents interacting through catching, pass-

ing, rebounding, and defending. Extensive ablation studies validate

key design choices, such as soft routing and policy fine-tuning, and

expose the limitations of existing methods in handling ambiguous

subtasks. By addressing skill integration and phase transitions in

long-horizon tasks, our approach advances the capabilities of rein-

forcement learning in dynamic, interactive environments.

2 Related Work
Creating robust controllers for long-horizon, multi-phase tasks re-

mains a core challenge in reinforcement learning (RL) and character

animation. Our work mainly builds on two areas of research: deep

RL for physics-based character control and policy composition for

executing multi-phase tasks.

Traditional approaches of physics-based character control, in-

cluding dexterous control, typically rely on trajectory optimization

and/or manually designed heuristic rules to achieve control in a plan-

ning or classic optimization way [Chen et al. 2023b; Liu 2008, 2009;

Mordatch et al. 2012; Wang et al. 2013; Ye and Liu 2012]. Early work

also explored using pre-collected mocap [Kry and Pai 2006; Pollard

and Zordan 2005; Zhao et al. 2013] to generate human-like motions

through imitation. During recent years, imitation learning using

deep RL for policy optimization has drawn wide attention and be-

come a popular approach for physics-based character control [Ling

et al. 2020; Merel et al. 2017; Peng et al. 2018a, 2022, 2021; Won et al.

2020; Xu and Karamouzas 2021; Xu et al. 2023a; Yao et al. 2022, 2023;

Zhu et al. 2023]. The deep RL framework has demonstrated remark-

able success in training policies for physics-based character control

across diverse domains, including locomotion [Peng et al. 2017; Xie

et al. 2020], racket sports [Wang et al. 2024a; Zhang et al. 2023], , ball

games [Kim et al. 2025; Liu and Hodgins 2018; Liu et al. 2022; Wang

et al. 2024e], instrument performance [Luo et al. 2024; Wang et al.

2024d; Xu and Wang 2024; Zakka et al. 2023] and object manipula-

tion [Bae et al. 2023; Wu et al. 2024; Xie et al. 2023; Yang et al. 2022].

Our approach follows the recent paradigm of adversarial imitation

learning [Peng et al. 2021; Xu and Karamouzas 2021] combining

a GAN-like architecture with reinforcement learning for motion

imitation with goal-directed control, and perform motion synthesis

given partially observable reference motions collected frommultiple

disparate sources. Policies trained with our approach enable the

character to interact with the basketball validly in a human-like

manner, without ball trajectories references.

Long-horizon strategic behaviors in real life, like basketball play-

ing, often involve multiple-phased subtasks, and demand the execu-

tor to effectively chain a bunch of distinct primitive skills into a co-

herent sequence for task execution. To chain multiple primitive poli-

cies, traditional methods often assume that two consecutive skills

will share some common states in which the succeeding policy can

take over the character [Liu and Hodgins 2017; Pan et al. 2024; Wang

et al. 2024b,e; Xiao et al. 2023; Xu and Karamouzas 2021]. Recent

research focuses on aligning skill transitions through state distribu-

tion matching. Techniques include regularizing terminal distribu-

tions [Lee et al. 2021], modifying initial state distributions [Konidaris

and Barto 2009], or employing bi-directional optimization to itera-

tively refine both [Chen et al. 2023a]. While these methods improve

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:3

robustness, they struggle when state distributions between skills

are ill-defined. For example, in the shoot-off-the-dribble task, drib-

bling and shooting are subtasks with clearly defined goals, but may

have completely disjoint in-betweening states. The intermediate

ball-gather behaviors are needed to close the gap. However, there

is no clear phase division for dribbling and shooting, and, thereby,

we cannot train a ball-gather policy simply in a standalone way. In

this work, we present an approach to achieve such intermediate

policies with ill-defined initial and terminal states. Based on that,

a high-level policy is introduced to perform policy composition

hierarchically for seamless transitions between primitive policies.

Previous literature explored hierarchical reinforcement learning

for planning tasks [Kulkarni et al. 2016; Peng et al. 2017; Vezhn-

evets et al. 2017], where high-level controllers generate goals for

low-level controllers to execute, while in this work, we focus on

composing multiple policies in a mixture-of-experts style through a

hierarchical architecture. Early work uses hierarchical architectures

to compose multiple primitive policies/poses through weighted aver-

aging in single-phase tasks [Peng et al. 2019; Ranganath et al. 2019],

or through hard routing [Tessler et al. 2017; Wang et al. 2024a,e]

to pick a primitive policy from a pre-trained policy set for control

at each moment. To generate human-like motions, the former ap-

proach typically needs additional imitation learning during compo-

sition to avoid unnatural behaviors caused by too much averaging.

The latter one, on the other hand, would suffer the challenge of

policy transition when switching between different primitive poli-

cies. Our proposed soft-routing scheme allows policy composition

by weighted averaging, and, meanwhile, encourages one primitive

policy to dominate the control at each moment, thereby ensuring

seamless and natural transition between heterogeneous policies.

3 Method Overview
We present a novel method for composing RL policies across distinct

subtasks, enabling a physically simulated character to perform long-

horizon, complex tasks such as playing basketball. A proficient

basketball player must execute a wide range of fundamental skills

and, importantly, transition fluidly between them without losing

control of the ball. While the complete repertoire of basketball

skills is extensive, we select a core set of seven skills and their

transitions to showcase our method’s ability to generate physically

simulated players capable of unscripted, continuous, and interactive

basketball behaviors (Figure 2). The main focus of this work is to

enable seamless transitions between subtasks. We categorize these

transitions into three types, ordered by increasing difficulty. This

hierarchy also guides our approach when selecting the appropriate

transition method for a given pair of policies:

A. Direct Execution: Succeeding policy can be executed di-

rectly from terminal state of the preceding policy. Used when

transitioning between behaviors when the two consecutive

policies share common states generally, such as Shoot to Lo-
comotion or Locomotion to Defend.

B. Mutual Adaptation: Succeeding policy must adapt to novel

initial states produced by the preceding policy while the pre-

ceding policy must lead to a state manageable by the succeed-

ing policy. For instance, transitioning from Catch to Shoot

ReboundCatch

Pass

Locomotion Defend

Shoot

A. Direct Execution
B. Mutual Adaptation
C. Intermediate Policy

Possession No Possession

Gather

Dribble

Fig. 2. Our physically simulated character is capable of performing seven
distinctive basketball skills and transitioning between them. The policies
(shown as black boxes) include both offensive and defensive skills. The
transitions between subtasks can be categorized into three types ordered
by increasing difficulty: A. Direct Execution; B. Mutual Adaptation; and
C. Intermediate Policy. The most challenging case, Type C, requires an
additional intermediate policy (shown as a green box) to be trained to bridge
the gap between two otherwise incompatible policies.

may fail under direct execution if the ball is not in a familiar

configuration for the shooting policy.

C. Intermediate Policy: This transition requires an interme-

diate policy to bridge incompatible subtasks. For example,

transitioning from Dribble to Shoot or Pass often demands a

Gather policy to reposition the ball appropriately.

We focus the introduction to our approach on the most challeng-

ing case (Type C transition), which requires intermediate policies.

Note that the need for intermediate policies is specific to the subtask

definition. Our goal in this work is to provide solutions to three

types of transitions, so the user can systematically build transitions

between any arbitrary pair of subtasks. Intermediate policies are

needed for Type-C transitions only. As shown in Figure 2, most

transitions (Type A and B) do not require them and can be handled

by simplified variants of the same method (Figure 3). We ground

our exposition on the task of shooting off the dribble, a common

basketball skill. By introducing an intermediate gathering policy

between the pre-trained dribbling and shooting policies, our sim-

ulated player achieves a 91.8% shooting success rate from a wide

range of challenging dribbling states, including facing away from

the hoop and performing complex maneuvers such as spins, pivots,

and pull-up jumpers.

The conditions for transition are also crucial to the success of a

challenging long-horizon task. We introduce a high-level routing

policy, trained to automate subtask transitions, eliminating the need

for manually defined state conditions. Similar to controls in video

games, the router allows transitions to be triggered by a user or

external program, balancing smoothness with responsiveness.

Although prior work has demonstrated that imitation-based RL

are effective in learning from human motions, ensuring their ro-

bustness and generality remains challenging and requires substan-

tial demonstration data. Unfortunately, structured datasets with

corresponding full-body motion, detailed finger motion, and ball

trajectories remain scarce. Therefore, a secondary but key contri-

bution of our approach is demonstrating that it is possible to learn

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:4 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

r(s, a)+V̄shoot

performance evaluator

adaptation

ShootDribble

Dribble

Rebound Catch

Pass

Locomotion Defend

Shoot

Defend

r(s, a)+V̄shoot

r(s, a)+

V̄passr(s, a)+

V̄catch

initial state generator

performance evaluator

adaptation

adaptation

adaptation

performance evaluator

performance evaluator

3D mocap 2D video

+

ad
ap

t

ad
ap

t

ad
ap

t

Catch Catch PassShoot

Gather
Locomotion

Individual Policies A. Direct Execution

B. Mutual Adaptation

C. Intermediate Policy

ad
ap

t

Fig. 3. Three transition types are illustrated by examples. This work focuses on the most challenging case, Type C transition (upper-right), which requires an
intermediate policy to facilitate the transition. To train a policy for such an ill-defined subtask (green), our method utilizes the terminal states of the preceding
policy (red) to provide an initial state distribution, and the succeeding policy (blue) to provide its state value function𝑉shoot for reward shaping. Simultaneously,
the selected states from the rollouts of the intermediate policy are used to adapt the succeeding policy. Type B transition is less challenging and can be done
with only adaptation and value-function-based reward shaping, without the need to train an intermediate policy specifically. Type A transition is the least
challenging one and can be done by directly executing the succeeding policy from any state of the preceding policy.

complex basketball skills from heterogeneous datasets containing

both 2D videos and 3D mocap, without requiring ball trajectories

or correspondence between full-body and hand motion data.

4 Learning from Unstructured Motions
Figure 4 shows our system architecture for primitive policy learn-

ing from unstructured motions. We use Proximal Policy Optimiza-

tion (PPO) [Schulman et al. 2017] as the backbone reinforcement

learning algorithm and employ an adversarial imitation learning

framework [Xu and Karamouzas 2021; Xu et al. 2023a] to train the

primitive policies. Specifically, for the shooting-off-the-dribbling task,
we train policies for two well-defined subtasks: dribbling in an arbi-

trary target direction with a randomly given speed, and shooting

the ball into the hoop. Our objective is to train a character capable

of dribbling and shooting on demand in real time. This goal makes

it impractical to rely on tracking a fixed set of motion trajectories,

as done in prior work [Wang et al. 2024e]. Achieving the desired

flexibility requires access to a large-scale, diverse set of reference

motions, which necessitates relaxing the assumption of structured

motion datasets with one-to-one correspondences between gross

body motion, detailed hand motion, and basketball trajectories. To

address this challenge, we: a) incorporate multiple motion data

sources, including 3D motion capture and 2D video data; b) decou-

ple full-body motions into several groups [Liu and Hodgins 2018; Xu

et al. 2023a], reducing the need for combined motions across differ-

ent body parts; and c) rely on task rewards to eliminate dependency

on corresponding basketball trajectories, as collecting or generating

them is highly challenging. We refer to the supplementary materials

for implementation details and hyperparameters for policy training.

Despite the strength of our approach for primitive policy learning,

our method for policy transition (Section 6) does not have a spe-

cial requirement on how primitive policies are trained, and can be

combined with other existing, primitive skill learning methods.

4.1 Unstructured Data Sources
Public motion capture datasets, such as LAFAN1 [Harvey et al. 2020],

AMASS [Mahmood et al. 2019], the CMU Mocap Dataset [CMU

2003], provide full-body motion data but lack detailed hand motions,

including wrist and finger dynamics. On the other hand, numerous

datasets focus on detailed hand motions but do not include corre-

sponding full-body motion data [Chao et al. 2021; Fan et al. 2023;

Taheri et al. 2020; Wang et al. 2024c]. Video data offer the potential

to capture both full-body and hand motions at scale. However, it

is limited by challenges such as occlusion, depth ambiguity, incon-

sistent picture quality, and motion blur, making it less reliable as

a primary data source. In this work, we use all the data sources

described above, including:

• Internet videos: We use ExAvatar [Moon et al. 2025] and

TRAM [Wang et al. 2025] to extract hand and body poses

from online videos, respectively.

• Full-body-without-hand mocap data: running motions from

LAFAN1 [Harvey et al. 2020] and other motions from the

CMU Mocap Dataset [CMU 2003] to train the base skills.

• Hand-only data: We recorded our own finger motions using

Rokoko Smartgloves, capturing a subject shooting in place

and dribbling within a short range.

Notably, we do not assume access to the corresponding ball tra-

jectories in our dataset. While it is technically feasible to extract

ball trajectories from videos or record ball states using motion

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:5

 μt log σt

Adaptation

 st

Trainable Copy

Parameter Lock

 gt

Eϕ

Iϕ

Zero
Initialization

 st gt

 g′ t

Goal-Directed
Task Rewards

Discriminator
Ensemble

Discriminator
Ensemble

Reference Motions

Control
Policy

Simulated Character

Physics
Simulator

30Hz

PD Controller

Imitation
Rewards

state action

rg
t

rt
imit

120Hz

 Critic k
Source Motions

,i

Fig. 4. System architecture for primitive policy learning in our system. We decouple the full-body motions into body and hand split, and use reinforcement
learning to imitate unstructured motions collected from disparate sources without needing ball trajectory reference or requiring the correspondence of the
motions. From top to down on the left side, we show the screenshots of motions from online videos, body-only mocap data of basketball playing and normal
locomotion, and our own captured hand motions. On the right side, we show the network structure for policy adaptation [Xu et al. 2023b]. This structure
allows us to introduce an optional additional goal input g′𝑡 during adaptation for policy transition training, and is suitable for our training strategy for pivoting
foot control when transitioning to the shooting policy from dribbling motions (see the supplementary materials for the details).

capture systems, acquiring high-quality and large-scale trajecto-

ries remains labor-intensive. Moreover, avoiding dependency on

basketball-specific trajectories allows us to utilize non-basketball

motion data, such as the running motion from LAFAN1 dataset.

4.2 Learning to Dribble
To fully take advantage of the unstructured motion datasets for

training a dribbling policy, we group full-body poses into three cate-

gories: lower body, upper body, and hands. Unlike typical grouping

schemes [Bae et al. 2023; Liu and Hodgins 2018], we treat the two

hands (including wrist rotations) as a separate group from the arms,

with the elbows serving as the root links. This separation facilitates

the use of hand-only motions. Putting two hands into one group im-

proves coordination between the hands and helps prevent unnatural

poses, such as dribbling with both hands simultaneously.

We train the dribbling policy using reinforcement learning in a

GAN-like architecture, combined with a multi-objective learning

framework [Xu et al. 2023a] to balance imitation and task-specific

goals. The policy is guided by two imitation objectives, one for

hands and one for the reset body parts, with rewards provided by

discriminators that process partially observable motions, as shown

in Figure 4. Additionally, two task-specific rewards are employed:

one for velocity-controlled navigation and another for dribbling.

We refer to the supplementary materials for more details. During

training, the policy autonomously explores physical interactionwith

the ball while being guided by the two task rewards and partially

observable reference motions.

To adhere to the basketball rules and ensure valid interactions

between the simulated character and the ball, we implement two

types of violation detection as part of our goal-directed reward

functions that consider: (1) invalid contact between the ball and

other body parts besides the hands; and (2) traveling when the

ball is held. The input to the dribbling policy includes the current

pose of the character and of the ball, a target velocity vtarget, and a

variable indicating the dribbling state of the ball. The target velocity

is generated randomly during training and given by the user via the

joystick during interactive control.

4.3 Learning to Shoot
For training the shooting policy, we do not consider any body part

grouping but directly perform imitation learning using three full-

body demonstrations of jump shooting. We use one full-body im-

itation objective and a task-specific reward measuring the shot

accuracy and ball-holding performance before the shot is taken. We

refer to the supplementary materials for the details of state space,

action space, and reward definition.

5 Learning Intermediate Subtasks
In basketball terms, the transition between dribbling and shooting

is defined by another subtask called “gathering”. This intermedi-

ate but critical subtask not only requires the character to rapidly

stop and catch the ball, but also to adjust ball-hold poses and body

orientations for jump shooting while maintaining balance. How-

ever, gathering does not have clearly defined initial and terminal

states, preventing simply training an imitation policy or chaining it

between the dribbling and shooting policies.

To train such an intermediate subtask, our method utilizes the ter-

minal states of rollouts generated by the preceding policy (dribbling)

to provide an initial state distribution. Without defining a fixed set

of terminal states of dribbling, the gathering policy is expected to

take over the character from any dribbling state. Thereby, random

states drawn from the dribbling rollouts will be taken as the initial

state for the gathering policy. Meanwhile, we utilize the state value

function of the succeeding policy (shooting) to shape the reward

function, so that the character learns to reach a state from which

the shooting policy is likely to succeed (cf. Type C in Figure 3). The

reward for the gathering policy is defined as:

𝑟gather =

{
−1 if any violation is detected,

𝑟pose + 0.25Clip

(
𝑉shoot (s𝑡 , g𝑡),−𝑣, 𝑣

)
otherwise.

(1)

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:6 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

𝑟pose ∈ [0, 1] is a reward term evaluating the ball holding perfor-

mance, involving finger and palm poses related to the ball and body

orientation related to the hoop (see the supplementary materials for

details). We define 𝑉shoot as the accumulated task reward from state

s𝑡 following the shooting policy, bounded by [−𝑣, 𝑣]. We employ

PopArt [Van Hasselt et al. 2016] to perform value normalization

on the critic (value network) output in PPO to obtain 𝑉shoot. We

set 𝑣 = 1 in all of our experiments. We refer to the supplementary

materials for details of the reward function definition. While the

𝑉shoot term can help guide the policy to generate poses preferred

by the shooting policy, the heuristic reward term 𝑟pose for gather-

ing is still necessary to steer the character to a near-shooting pose,

since the value function will generally produce low values when the

character is far from shooting poses, leading to ineffective guidance.

To improve the generalizability of the shooting policy and make

it better cooperate with the gathering policy, we further adapt the

shooting policy, in tandem with the gathering policy training, by

taking the states produced by the gathering policy as the initial

state for the shooting policy, using the approach of latent space

manipulation from AdaptNet [Xu et al. 2023b].

Instead of adapting the shooting policy after the gathering policy
is trained, a key algorithm design choice is to adapt the shooting

policy simultaneously during training of the gathering policy. Specif-
ically, we filter out the “good” states encountered during the training

of the gathering policy and use them as the initial states for adapt-

ing the shooting policy. As the policy is adapted, its corresponding

state value function is also updated and being used by the reward

function of gathering policy. A good state has a score greater than

−𝑣 when evaluated by the evolving 𝑉shoot . Since initially the poses

generated by the gathering policy are distinctively different from the

high-value states for the pre-trained shooting policy, we bootstrap

the learning by randomly permitting 25% of the states with value

estimations less than −𝑣 , as long as the ball is held in hand and the

character is approximately facing the hoop. These states are used

as additional initial states to adapt the shooting policy.

The gathering policy is trained using the same goal state as we

obtain the pretrained shooting policy (Section 4.3) but with an addi-

tional variable to indicate the pivoting foot to prevent traveling. We

ignore the traveling problem during the pertraining of the shooting

policy as it would not happen when the policy simply imitates the

shooting motions in the reference, where the subject directly jumps

up for shooting. With the introduction of gathering, we extend the

shooting policy during adaptation and also include the pivoting foot

indicator in the goal state of the adapted shooting policy.

6 Composing Policies for Long-Horizon Tasks
One possible approach to transitioning between policies is to initiate

gathering when the user commands the character to take a shot, and

transition to the shooting policy when the reward of the gathering

policy (Eq. 1) is higher than the −𝑣 threshold. However, using such

a heuristic often results in the character stalling in a ball-holding

pose without transitioning to the shooting policy or failing to catch

the ball after the transition. To address this issue, we introduce

a high-level routing policy that assembles the subtask policies to

perform a long-horizon task (Figure 5).

Router

Dribble

Gather

ad
ap
t

Shoot
at
shoot

at
gather

at
dribble

st, gt

ct

ωt

𝒜t

. at

V̄shoot> − v πc

Fig. 5. The high-level routing policy assembles the subtask policies to per-
form shoot-off-the-dribble task. It takes as input the user command, the
current state, and the goal vector, and outputs the weights for linear com-
bination of the actions from the subtask policies. ⊕ denotes element-wise
add, ⊗ denotes concatenation, and ⊙ denotes dot product.

The primitive policies in our studied case synthesize the unstruc-

tured motions for subtask execution instead of tracking a fixed set of

or a given full-body reference. This makes motion imitation, during

high-level policy training, inapplicable. To avoid the high-level pol-

icy averaging too much on the outputs of the primitive policies and

generating unnatural motions, we model the high-level policy as a

router function. Unlike the conventional policy routing technique

[Bacon et al. 2017; Tessler et al. 2017], our routing policy performs

soft merging instead of activating only one policy at a time step. We

define a reference command c𝑡 , as a one-hot vector to heuristically

indicate whether the character should dribble, gather, or shoot the

ball. The routing policy takes c𝑡 as input and outputs an offset from

c𝑡 to produce the weights for linear combination of the actions from

the primitive policies:

𝝎𝑡 = c𝑡 + 𝜋c (s𝑡 , g𝑡 , c𝑡), a𝑡 = 𝝎𝑡 · A𝑡 . (2)

Here 𝜋c is the routing policy and A𝑡 = [adribble𝑡 , agather𝑡 , ashoot𝑡] is
the collection of the deterministic output from the three subtask

policies, i.e. adribble𝑡 = E[𝜋dribble (·|s𝑡 , g𝑡)], agather𝑡 = E[𝜋gather (·|s𝑡 , g𝑡],
ashoot𝑡 = E[𝜋+

shoot
(·|s𝑡 , g𝑡)] and 𝜋+

shoot
indicates the shooting policy

after adaptation. Note that the definition of g𝑡 with respect to each

subtask is different. We refer to the supplements for details.

The reference command for dribbling is c𝑡 = [1, 0, 0] and be-

comes [0, 1, 0] after receiving an external command to shoot. When

𝑉shoot (s𝑡 , g𝑡) > −𝑣 , we set c𝑡 = [0, 0, 1], which implies that the shoot-

ing policy may be able to take over the character. At the beginning

of training, 𝜋c outputs small values and the exploration will start

based on the given c𝑡 as guidance. As training goes on, the final

weight 𝝎𝑡 may diverge from c𝑡 in order to generate more stable

transitions between different policies.

To encourage 𝜋c to generate one-hot-like weights 𝝎𝑡 through

which only one policy dominates at each time step, we define the

training reward for 𝜋𝑐 as follows:

𝑟 =


𝑟gather if the gathering policy dominates the control,

0.5𝐼switch + 𝑟shoot if the shooting policy dominates,

0 otherwise,

(3)

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:7

where we consider a policy dominates the control if its associated

weight in 𝝎𝑡 is larger than the sum of the other two. 𝐼switch = 1 only

for the first time when the dominant policy switches from gather to
shoot and 𝐼switch = 0 otherwise. The detailed definitions of 𝑟gather and

𝑟shoot are provided in the supplementary materials. The high-level

policy after training can achieve almost 100% success rate for ball

gathering from dribbling states and an overall shot percentage of

91.8% (see Section 8).

To reduce the inference time consumption, after the training of

the high-level composer policy, we perform an additional distilla-

tion process to compress the hierarchical policy into a single neural

network. This process is done in a simple supervised learning man-

ner with samples generated online through the physical simulator.

The distilled policy during our experiments can achieve the same

performance as the hierarchical policy with only trivial errors.

7 Other Skill Transitions
The same method used for shoot-off-the-dribble is directly applied to
pass-off-the-dribble. Both of them are defined as Type C transitions as

shown in Figure 3. Our system also supports a range of other skills,

including rebounding, catching, defending, general locomotion, and

various transitions, as summarized in Figure 2. Type A transitions

are achieved through direct execution of the succeeding policy.

Type B transitions serve as a simplified version of Type C, requiring

reward shaping of the preceding policy using the value function

of the succeeding one, along with adaptation of the policy using

rollouts generated by the preceding one (cf. Figure 3).

A variation of Type B transitions is employedwhen training catch-

ing and passing transitions (Figure 3, bottom-right). After individu-

ally pre-training both policies, we fine-tune them jointly through

co-adaptation and co-reward shaping using two interacting agents.

While adapted to diverse initial poses produced by the terminal

states of the passing and catching policies, this enables the passing

agent to learn to make catchable throws, and let the catching agent

learn to receive the ball in a state ready for an immediate pass/shot.

8 Experiments
We conduct experiments to evaluate our skill composition frame-

work for physics-based character control. While we provide qual-

itative results for all skill transition types in Section 8.3 (see also

companion video), our quantitative analysis in Section 8.2 focuses

on the most challenging Type C transition from dribbling to shoot-

ing that requires the use of an intermediate gathering policy, as

shown in Figure 3. Our experiments utilize IsaacGym [Makoviy-

chuk et al. 2021] as the underlying physics engine. All policies are

trained using PPO [Schulman et al. 2017]. Other implementation

details, including policy training procedures and hyperparameters,

are provided in the supplementary materials.

8.1 Data Preprocessing
As detailed in Section 4, we use ExAvatar[Moon et al. 2025] and

TRAM [Wang et al. 2025] to extract 3D hand and body poses from

videos and perform motion synthesis via imitation learning for

primitive policy training. The video data is collected exclusively

from publicly available sources. Additionally, we enrich the dataset

Fig. 6. Examples of the gathering reference motions extracted from videos
without hand. From left to right, the subject is respectively pivoting to spin
clockwise with the right foot on the ground, catching the ball directly during
dribbling forward for shooting, and performing a fast in-place spinning
counter-clockwise with the right foot pivoting on the right foot.

Table 1. Reference motions for primitive policy training. All videos are
collected online. The Dribble mocap (body) data is collected from CMU
Mocap dataset. Locomotion data are running motions from LAFAN1. All
mocap (hand) motions are collected by ourselves. Additionally, we take 3
demonstrations of jump-shooting motions (full body with hands) to train
the shooting policy. We mixedly use gathering and catching motions for
catching and rebounding. All motions do not include ball trajectories.

Source Length Source Length

Dribble (body/hand) Defensive Stance (body/hand)
video 48.8s/36.1s video 9.3s/1.4s

mocap 58.2s/30.5s mocap 25.1s/25.1s

Gather (body/hand) Locomotion (body)
video 30.3s/7.7s mocap 141.4s

Catch (body/hand) Pass (full-body)
video 10.1s/10.1s video 4.5s

by combining the processed motions with publicly available mocap

data and a small set of hand motions that we captured ourselves.

Table 1 summarizes the data sources and the motion lengths in

our reference motion dataset. Most of theDribblemotions extracted

from videos consist of in-place movements due to the limitation of

the pose estimation models when facing fast movement subjects.

We incorporate normal running motions from LAFAN1 [Harvey

et al. 2020] to enable the policy to learn locomotion with fast move-

ments and directional changes during dribbling. Gather motions

are extracted from 13 video demonstrations (see examples in Fig-

ure 6). Due to occlusion and rapid hand movements, we obtained

only a limited set of ball-holding hand motions during the gathering

phase. The Defensive Stance motions include stance poses while

the subject stretches the arms to perform blocking or screening. For

shooting, we specially use three full-body demonstrations of jump-

ing shooting, including hand poses. Our dataset does not include ball

trajectories. Instead, the control policy explores valid interactions

with the ball on its own under the guidance of the task rewards.

8.2 Quantitative Evaluation
To evaluate the quality of Type C transitions generated by our

approach, we analyze the performance of the shoot-off-the-dribble

task by focusing on two primary metrics:

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:8 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

Fig. 7. Learned ball-hand interactions by policies trained with our approach.
From left to right, the snapshots are captured during the character dribbling,
gathering and shooting the ball, respectively.

Fig. 8. The testing scenario to count the shot percentage.

• Ball Catching Rate: This metric checks whether the ball is suc-

cessfully gathered and held by the character after a shooting

command is issued and before the ball is shot.

• Shot Percentage: This measures the ratio of successful field

goals to attempted field goals. Attempts that fail due to un-

successful ball catching or a lack of response to the shooting

command are also included in this metric.

We compare our method against three baselines which offer alterna-

tive approaches for policy composition. These baselines represent

zero-shot and sequential approaches that have been explored in

different application domains for skill chaining.

• DirectExecution (Dribble→Pretrained Shoot): This baseline
uses the pretrained shooting policy (𝜋shoot) without any adap-

tation or intermediate gathering policy. We use grid search on

the state value of the shooting policy to find out the optimal

transition, which is similar to the implementation in prior

work [Xu and Karamouzas 2021].

• NoAdapt (Dribble→Gather→Pretrained Shoot):This approach
incorporates a gathering policy but no adaptation is applied

to 𝜋shoot. The function of 𝑉shoot, thereby, is fixed during gath-

ering policy training. Like DirectExecution, this is zero-shot
with the state value used for policy switching.

• SequentialChaining (Dribble→Shoot) : The sequential ap-
proach leverages terminal states from the preceding policy

to train the succeeding policy and improve transition suc-

cess [Clegg et al. 2018; Liu and Hodgins 2017; Wang et al.

2024e]. A shooting policy is trained from random initial states

provided by the dribbling policy.

Additional comparisons to other policy-switch strategies and de-

tailed ablation studies are provided in Section 9.

8.2.1 Ball Catching Rate. Figure 9 shows the ball catching rate for

different methods as a function of the character’s dribbling speed at

the time a shooting command is issued. Our method shows robust

0 1 2 3 4
0.0

0.5

1.0

B
a

ll
C

a
tc

h
in

g
R

a
te

DirectExecution

0 1 2 3 4
0.0

0.5

1.0

NoAdapt

0 1 2 3 4

Speed [m/s]

0.0

0.5

1.0

B
a

ll
C

a
tc

h
in

g
R

a
te

SequentialChaining

0 1 2 3 4

Speed [m/s]

0.0

0.5

1.0

Ours

Fig. 9. Ball catching rates as a function of dribbling speed. The DirectEx-
ecution baseline fails almost entirely due to the incompatibility between
policies. The NoAdapt baseline shows high success rates for the gather-
ing policy (red bars), but suffers from poor generalization of the shooting
policy after the shooting policy takes over the character (blue bars). The
SequentialChaining baseline performs better overall but underperforms
compared to the dedicated gathering policy in the NoAdapt method. Our
method achieves consistently high ball catching rates across speeds.

performance across all speeds, maintaining a high ball catching rate,

while the baselines exhibit significant limitations.

The Direct Execution baseline fails almost entirely, with a 0.7%

catching rate across all speeds. This result highlights the incom-

patibility between the dynamic dribbling state and the unadapted

shooting policy, consistent with prior findings [Xu and Karamouzas

2021] that direct policy switching requires the preceding policy to

transition the system into a compatible state for the succeeding

policy. For the NoAdapt baseline, the red bars in Figure 9 indi-

cate that the gathering policy performs well at catching the ball,

achieving a high average catching rate across all speeds. However,

the pretrained shooting policy struggles to generalize, resulting in

significant performance drop. Even when adapting the shooting

policy during the training of the gathering policy (as shown in our

supplementary materials), the average ball catching rate remains

low unless the state value is explicitly incorporated as a reward term

for the gathering policy (cf. Eq. 1). This result underscores the diffi-

culty of achieving effective cooperation between the gathering and

shooting policies through random exploration alone during training.

The SequentialChaining baseline, which trains a single policy for

both gathering and shooting, achieves a higher average ball catch-

ing rate than the DirectExecution baseline but underperforms

compared to the NoAdapt that utilizes a separate gathering policy.

This degradation suggests that the lack of explicit phase division

between gathering and shooting hinders policy effectiveness.

In contrast, our method achieves a 98.3% ball catching rate across

all dribbling speeds, as shown in the bottom-right plot of Figure 9. By

dividing the task into distinct phases and leveraging state value as a

reward signal, our framework ensures smooth cooperation between

policies, enabling reliable ball gathering and shooting even under

highly dynamic conditions. These results underscore the value of

structured phase division and reward shaping in multi-phase tasks.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:9

Pretrained Shoot DirectExecution NoAdapt SequentialChaining Ours

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10. Heatmap of shot percentages for the baselines and our method across different positions and approaching directions on the court. The first subplot
shows the performance of the vanilla pretrained shooting policy, where the character and ball states are initialized using reference motions rather than
random dribbling states, achieving an overall shot percentage of 93.0%. For baselines, directly applying the pretrained shooting policy or using combined
gathering and shooting strategies leads to poor performance (1.3%, 6.1%, and 12.7% overall shot percentages, respectively), as they fail to handle the dynamic
and diverse states arising from dribbling. Our method achieves a shot accuracy of 91.8% nearly matching the vanilla pretrained policy, demonstrating its
ability to adjust character poses dynamically during the gathering phase and perform accurate shots even in challenging scenarios.

Table 2. Shot percentage of our approach when the character dribbles
at different approaching directions toward the hoop. “Orth.” stands for
the orthogonal direction. Each of the reported numbers is obtained by
considering an angle range of 𝜋/2. The overall shot percentage is 91.8%. We
refer to the supplementary material for visualized results.

Facing Opposite Left Orth. Right Orth.

Shot Percentage 95.4% 90.4% 92.7% 92.4%

8.2.2 Shot Percentage. We evaluate the shot percentage with the

character under varying positions and approaching directions to-

ward the hoop. Similar to the training setup, we define a valid

shooting area as a ring between 2.5m and 7.5m from the hoop, as

shown in Figure 10. This area is divided into a grid, where each grid

cell has a radius of 0.5m. In each cell, we conduct 400 trials with

the character dribbling at different speeds and approaching direc-

tions. While our approach has an overall shot percentage of 91.8%,

SequentialChaining achieves a slightly higher shot percentage

(12.7%) than the other two baselines, but still performs much poorly

compared to our method. According to Figure 9, our method has a

high success rate of ball catching. Occasional failures may occur due

to excessive movement speed or an extremely unstable state (e.g.,

fast spinning). For shooting off the dribbling, most missed shots

originate from positions that are too far from the hoop, as shown in

the rightmost subplot in Figure 10, instead of the policy transition.

Additionally, Figure 10 includes the vanilla performance of the

pretrained shooting policy, where the character and ball states are

initialized using shooting reference motions rather than random

dribbling states. Despite being trained with only three demonstra-

tions of shooting motions, the vanilla pretrained shooting policy

achieves a high overall shot percentage in a wide area around the

hoop. This success highlights its effectiveness when starting from

well-aligned and familiar states. However, when applied to unseen

character and ball states resulting from dribbling or gathering, the

policy’s performance deteriorates significantly.

Fig. 11. Transitions from locomotion to rebounding and to dribbling. The
former transition is obtained via the common stance poses without addi-
tional learning (Type A transition). The latter one is obtained by adapting
the pretrained dribbling policy using terminal (ball-holding) poses from a
catching policy (Type B transition).

Table 2 further analyzes the shooting performance of our ap-

proach based on the character’s approaching direction, demonstrat-

ing its adaptability across a wide range of scenarios. As can be seen,

the shot percentage when the character approaches the hoop in a

facing direction is better than the vanilla pretrained policy. Overall,

our solution enables the policy to handle diverse and dynamic states

effectively, allowing the character to adjust its pose during gather-

ing. This includes spinning, pivoting, or turning to align with the

hoop, even when the character initially faces the opposite direction

to the hoop.

8.3 Qualitative Analysis
Despite the absence of ball trajectory data and the reliance on normal

running motions to learn locomotion during dribbling, the dribbling

policy successfully synthesizes unstructured motions from multiple

sources. It enables the character to perform complex tasks such

as sharp turns and abrupt stops while maintaining effective ball

control for arbitrary target velocities in the range of 0 to 5m/s. We

refer to the supplementary materials for the demonstrations along

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:10 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

Fig. 12. Passing and catching transition between different agents. The two
policies are adapted using the other’s state value function simultaneously.

Fig. 13. Cooperative behaviors between two characters. Both of the passing-
off-the-dribbling and shooting-off-the-catching behaviors are achieved by
adapting and composing the corresponding primitive policies using our
presented pipeline.

with those of the other primitive skills trained using adversarial

imitation learning. In all these cases, except for the shooting and

passing skills, we decouple full-body motions, enabling training on

unstructured, partially observable motions collected from disparate

sources without needing to track any reference ball trajectories.

Figure 14 illustrates the transitions from various dribbling states

to shooting. The character is able to adjust dynamically based on con-

text: catching the ball swiftly when possible, maintaining a dribble-

like state during sharp turns before gathering the ball, or pivoting

by spinning around one foot to align with the hoop. As shown in

Figure 6, the ball-gathering motions are notably different from those

used for dribbling or shooting. Mixing gathering reference motions

with shooting motions during policy training leads to undesirable

behaviors, such as directly throwing or punching the ball toward

the hoop instead of shooting (see the supplementary video).

Unlike shooting off the dribble, the transitions shown in Figure 11

are obtained without training an intermediate policy. Here, the re-

bounding policy is executed directly from the locomotion policy. The

same applies to the transition from rebounding to dribbling, though

the succeeding dribbling policy is adapted with a ball-catching pol-

icy. Similar adaptation is applied to improve cooperative behaviors

between two interacting characters by mutual adaptation, such as

passing and catching the ball, and passing-off-the-dribbling and

catch-and-shoot as shown in Figures 12 and 13. Our system also sup-

ports competitive interactions between two characters by training

a defending policy that enables strategic movements and defensive

Fig. 14. Demonstrations of our approach that controls the character to
shoot off the dribble at arbitrary dribbling states. The snapshots under each
subfigure show the keyframes where the character gathers the ball and
adjusts its pose for shooting.

Fig. 15. Four characters are controlled by human players through our control
policies to perform a 2-on-2 competition in real-time.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:11

0 1 2 3 4 5 6 7

of Samples
×108

0.0

0.5

1.0

B
a

ll
C

a
tc

h
in

g
R

a
te

0 1 2 3 4 5 6 7

of Samples
×108

0.0

0.5

1.0

S
h

o
t

P
er

ce
n

ta
g

e
Gather+Shoot

Gather→S.Shoot (Value)

Gather→A.Shoot (Random)

Gather→A.Shoot (Value)

Gather→A.Shoot (Value+Random) (Ours w/o High-Level Policy)

Fig. 16. Learning Performance with different intermediate policy training
strategies. “S.” stands for “Scratch” and means a shooting policy trained
from scratch with the gathering policy. “A.” stands for “Adapted” and means
a pretrained shooting policy adapted with the gathering policy. “Value” and
“Random” indicate the way to transfer the character and ball states produced
by the gathering policy to train or adapt the shooting policy. “Value” means
to transfer based on the state value evaluation from the shooting policy
and “Random” means to randomly transfer states from gathering to the
shooting policy. In the case of “Random”, the gathering policy serves only
as a sample generator for the shooting policy training or adaptation, and
the state-value term in Eq. 1 thus will be ignored. The shaded ranges show
the performance over three training trials.

actions such as screening and blocking by raising hands up. Fig-

ures 1 and 15 showcase interactions in which the offender players

(blue) shoot while the defenders (green) block.

9 Ablation Studies
We focus our ablation studies on the evaluation of (1) the training

strategy to obtain a good intermediate policy that bridges the gap

between a preceding policy (dribbling) and a succeeding policy

(shooting), and (2) the effectiveness of the high-level routing policy

for primitive policy composition.

9.1 Intermediate Policy Training
In Figure 16, we compare the learning performance of different

strategies for intermediate gathering policy training and shooting

policy fine-tuning. Gather+Shoot is the SequentialChaining base-

line, as we discussed in Section 8, which treats ball gathering and

shooting as a whole task in one phase. Only a single policy is trained

for that baseline, using a mixture of the gathering and shooting ref-

erence motions. All the gathering policies shown in the figure are

trained to utilize the same pretrained dribbling policy as an initial

state generator, and all the adapted shooting policies (A.Shoot) per-

form adaptation based on the same pretrained shooting policy. The

state-value based term in the reward function 𝑟gather (cf. Eq. 1) will

be ignored in the baselines without the “Value” label. Similar to

results shown in Section 8, the ball-catching rate is evaluated not

only for the gathering policy, but also for the shooting policy to see

if the transfer from gathering to shooting is stable. To draw a fair

comparison, here we show the performance of our system without

introducing the high-level policy for policy composition.

As shown in the figure, Gather→A.Shoot (Random) performs

the worst among the baselines, with only a small improvement

in ball catching rate at the end of training. We also test an ad-

ditional baseline (not shown in the figure) using a random state

transferring strategy for the shooting policy trained from scratch,

i.e. Gather→S.Shoot (Random). It performs even worse without

any performance improvement throughout the training. In contrast,

the “Value” baselines show a much more stable performance of ball

catching rate. It means that the introduction of the state-value re-

ward term can effectively help the gathering policy learn how to

control the character reaching a state manageable by the shooting

policy. Comparing the performance of Gather→S.Shoot and that

of Gather→A.Shoot, while the ball-catching rate is similar when

state-value based transfer is adopted, policy fine-tuning based on

a pretrained shooting policy (A.Shoot cases) shows better perfor-

mance on shot percentage.

The state-value evaluation from the shooting policy can effec-

tively improve the performance of the gathering policy. However,

the state-value estimator (the value network from the shooting pol-

icy under training for S.Shoot baselines or adaptation for A.Shoot

baselines) is trained in tandem with the gathering policy, and is

not always reliable, as it may be stuck at local optimal and cannot

effectively evaluate unseen states or potentially good states (the

states that are acceptable to make a field goal but the shooting pol-

icy has to be further trained or adapted to work with the given

states). Therefore, to increase the robustness of the whole system,

our method takes a random sampling strategy complementing the

state-value based transfer strategy for shooting policy adaptation,

as described in Section 5.

Gather+Shoot shows worse performance compared to the base-

lines of Gather→A.Shoot (Value), which demonstrates the necessity

to explicitly set multiple phases for transitions between drastically

different subtasks. Using the gathering and shooting reference mo-

tions simultaneously could lead to unnatural behaviors, where the

character, for example, throws out the ball while back facing the

hoop or directly punches the ball out toward the hoop. We refer to

the supplementary video for the animated results.

9.2 High-Level Routing Policy
We compare the performance of our system with and without the

high-level policy in Figure 17 and 18. Similar to other baseline com-

parisons, when no high-level policy is introduced, we perform policy

switches between dribbling, gathering, and shooting in a heuristic

way: the gathering policy will be called right after receiving a shoot-

ing command, and the shooting policy will take over the character if

the state value evaluation based on the current state of the character

and ball is higher than a threshold value. The optimal threshold

value is found by a grid search in the range [−1, 0] with an interval

of 0.1. As shown in the figures, although both methods rely on the

same primitive policies, the high-level policy achieves better perfor-

mance in terms of both the ball catching rate and shot percentage,

while also automating the transfer between those primitive policies.

Visually, without the high-level policy, heuristic rule-based policy

switch would cause undesired behaviors like a delayed response

from gathering to shooting, sticking to a ball holding pose without

performing shooting anymore, or even the character falling down.

We refer to the supplementary video for the animated results.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:12 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

0 1 2 3 4

Speed [m/s]

0.0

0.5

1.0

B
a

ll
C

a
tc

h
in

g
R

a
te

w/o High-Level Policy

0 1 2 3 4

Speed [m/s]

0.0

0.5

1.0

w High-Level Policy

Fig. 17. Ball catching rate of our system with and without the high-level
policy while the character dribbles at different velocities. The overall ball
catching rate is 86.0% when no high-level policy is introduced, and 98.3%
with the high-level policy.

w/o High-Level Policy w High-Level Policy

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 18. Heatmap of the shot percentage of our system with and without the
high-level policy. The overall shot percentage is 67.4% when no high-level
policy is introduced, and 91.8% with the high-level policy.

The high-level policy acts in a mixture-of-the-expert way. To

preserve the naturalness of the generated motions and prevent

excessive averaging across the output of primitive policies, the high-

level policy trained to encourage outputting actions dominated by

one primitive policy (cf. Eq. 3). This is a “soft routing” strategy, as

it still allows for the high-level policy to slightly merge behaviors

from multiple primitive policies. By using the soft routing strategy,

we can easily incorporate the reference command to the output

of the high-level policy. Training of the high-level policy, thereby,

starts with exploration around the reference command generated

heuristically in the same way as the baseline shown in Figures 17

and 18. This improves the training efficiency of the high-level policy

largely. In Figure 19, we compare the training performance of our

soft routing strategy with the hard routing strategy. In the hard

routing case, the output of the high-level policy is modeled as a

discrete one-hot vector through a softmax operation. Without the

guidance from the reference command, the high-level policy in

“hard routing” cases has to rely on itself to explore how to compose

multiple primitive policies. As shown in the figure, the performance

of the hard router is much lower than our soft router, and even worse

than the baseline using only heuristic rules (the reference command)

without the high-level policy. This highlights that, despite having

pretrained primitive policies, learning to effectively compose them

remains a non-trivial challenge. Our soft-routing approach provides

a more effective way to compose policies in a flexible way.

0 1 2 3 4

of Samples
×107

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
a

li
ze

d
R

ew
ar

d

Hard Router Soft Router (Ours)

Fig. 19. Learning performance when modeling the high-level policy as a
soft router (ours) and that modeling the high-level policy as a hard router.

10 Conclusion
Our results demonstrate the efficacy of a policy integration frame-

work in tackling multi-phase, long-horizon tasks. By treating pre-

ceding policies as initial state generators and succeeding policies as

evaluators via state value functions, we bridge the gap between dras-

tically different subtasks, enabling seamless transitions in scenarios

where intermediate states defy standard definition. This framework

is flexible and works in less challenging cases without the need

for a newly learned intermediate policy, or in scenarios involving

sequential cooperation between multiple agents. The success of our

approach in synthesizing diverse motion behaviors—using unstruc-

tured data sources and limited reference motions—highlights its

generality, with implications beyond basketball. Our method can

adapt to characters with different morphologies and skill stats by us-

ing styled reference motions and stats constraints during primitive

policy training. Once a characteristic-conditioned policy is trained,

the transitioning procedure remains the same. The whole policy

transition system is agnostic to the task of each primitive policy

and can be easily extended by introducing more primitive policies.

Despite the strengths of our approach, this work has certain

limitations. The motion quality falls short of the level demonstrated

by skilled human players, primarily due to limited reference data.

For instance, although ball-hand interactions appear plausible, the

character often adopts a high dribbling posture, with hands near

chest level—resembling arm positions during regular running.While

ball control is reliable and rarely fails, it lacks the fluidity typical

of human dribbling. Likewise, because we use only a single clip of

a low jumping motion, the character exhibits minimal vertical lift

when attempting to rebound the ball.

A potential future work is incorporating a biomechanically ac-

curate hand model, which could encourage more natural physical

interactions with the basketball. Another promising direction for

future research involves using large language models to plan high-

level tactical plans for multiple simulated players. This would allow

the training of multiple autonomous agents in cooperative and ad-

versarial settings.

Acknowledgments
This work was supported in part by the Wu-Tsai Human Perfor-

mance Alliances, Stanford Institute for Human-Centered Artificial

Intelligence, and Roblox. We thank Joe Gibbs Human Performance

Institute and Rokoko for providing mocap data for testing.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:13

References
Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architecture.

In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.
Jinseok Bae, Jungdam Won, Donggeun Lim, Cheol-Hui Min, and Young Min Kim. 2023.

Pmp: Learning to physically interact with environments using part-wise motion

priors. In ACM SIGGRAPH 2023 Conference Proceedings. 1–10.
Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay,

Yashraj S Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. 2021. DexYCB:

A benchmark for capturing hand grasping of objects.

Sirui Chen, Albert Wu, and C Karen Liu. 2023b. Synthesizing Dexterous Nonprehensile

Pregrasp for Ungraspable Objects. In ACM SIGGRAPH 2023 Conference Proceedings.
1–10.

Yuanpei Chen, Chen Wang, Li Fei-Fei, and C Karen Liu. 2023a. Sequential dexter-

ity: Chaining dexterous policies for long-horizon manipulation. arXiv preprint
arXiv:2309.00987 (2023).

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan

Jeschke. 2018. Physics-based motion capture imitation with deep reinforcement

learning. In Proceedings of the 11th ACM SIGGRAPH Conference on Motion, Interaction
and Games. 1–10.

Alexander Clegg, Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. 2018. Learning to

dress: Synthesizing human dressing motion via deep reinforcement learning. ACM
Transactions on Graphics (TOG) 37, 6 (2018), 1–10.

CMU. 2003. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/

Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023. C·

ase: Learning conditional adversarial skill embeddings for physics-based characters.

In SIGGRAPH Asia 2023 Conference Papers. 1–11.
Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed Kocabas, Manuel Kaufmann,

Michael J Black, and Otmar Hilliges. 2023. ARCTIC: A dataset for dexterous bimanual

hand-object manipulation. 12943–12954.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron

Courville. 2017. Improved training of Wasserstein GANs. arXiv preprint
arXiv:1704.00028 (2017).

Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust

Motion In-Betweening. 39, 4 (2020).

Minsu Kim, Eunho Jung, and Yoonsang Lee. 2025. PhysicsFC: Learning User-Controlled

Skills for a Physics-Based Football Player Controller. arXiv preprint arXiv:2504.21216
(2025).

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs.LG]

George Konidaris and Andrew Barto. 2009. Skill discovery in continuous reinforcement

learning domains using skill chaining. Advances in neural information processing
systems 22 (2009).

Paul G Kry and Dinesh K Pai. 2006. Interaction capture and synthesis. ACM Transactions
on Graphics (TOG) 25, 3 (2006), 872–880.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. 2016.

Hierarchical deep reinforcement learning: Integrating temporal abstraction and

intrinsic motivation. Advances in neural information processing systems 29 (2016).
Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C Karen Liu, Julien Pettré,

Michiel van de Panne, and Marie-Paule Cani. 2022. A survey on reinforcement

learning methods in character animation. In Computer Graphics Forum, Vol. 41.

Wiley Online Library, 613–639.

Youngwoon Lee, Joseph J Lim, Anima Anandkumar, and Yuke Zhu. 2021. Adversarial

skill chaining for long-horizon robot manipulation via terminal state regularization.

arXiv preprint arXiv:2111.07999 (2021).
Jae Hyun Lim and Jong Chul Ye. 2017. Geometric GAN. arXiv preprint arXiv:1705.02894

(2017).

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character

controllers using motion VAEs. ACM Trans. Graph. 39, 4, Article 40 (2020).
C Karen Liu. 2008. Synthesis of interactive hand manipulation. In Proceedings of the

2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 163–171.
C Karen Liu. 2009. Dextrous manipulation from a grasping pose. In ACM SIGGRAPH

2009 papers. 1–6.
Libin Liu and Jessica Hodgins. 2017. Learning to schedule control fragments for physics-

based characters using deep q-learning. ACM Transactions on Graphics (TOG) 36, 3
(2017), 1–14.

Libin Liu and Jessica Hodgins. 2018. Learning basketball dribbling skills using trajectory

optimization and deep reinforcement learning. ACM Transactions on Graphics (TOG)
37, 4 (2018), 1–14.

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, SM Ali Eslami, Daniel Hennes, Wojciech M

Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, et al. 2022. From

motor control to team play in simulated humanoid football. Science Robotics 7, 69
(2022), eabo0235.

Chaoyi Luo, Pengbin Tang, Yuqi Ma, and Dongjin Huang. 2024. Learning to Play Guitar

with Robotic Hands. In Computer Graphics Forum, Vol. 43. Wiley Online Library,

e15166.

Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J

Black. 2019. AMASS: Archive of motion capture as surface shapes. In Proceedings of
the IEEE/CVF international conference on computer vision. 5442–5451.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,

Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and

Gavriel State. 2021. Isaac Gym: High Performance GPU-Based Physics Simulation

For Robot Learning. arXiv:2108.10470 [cs.RO]

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg

Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture

by adversarial imitation. arXiv preprint arXiv:1707.02201 (2017).
Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito. 2025. Expressive whole-body

3D gaussian avatar. In European Conference on Computer Vision. Springer, 19–35.
Igor Mordatch, Zoran Popović, and Emanuel Todorov. 2012. Contact-invariant opti-

mization for hand manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics
symposium on computer animation. 137–144.

Liang Pan, Jingbo Wang, Buzhen Huang, Junyu Zhang, Haofan Wang, Xu Tang, and

YangangWang. 2024. Synthesizing physically plausible human motions in 3d scenes.

In 2024 International Conference on 3D Vision (3DV). IEEE, 1498–1507.
Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018a. Deep-

mimic: Example-guided deep reinforcement learning of physics-based character

skills. ACM Transactions On Graphics (TOG) 37, 4 (2018), 1–14.
Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:

Dynamic locomotion skills using hierarchical deep reinforcement learning. Acm
transactions on graphics (tog) 36, 4 (2017), 1–13.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019.

MCP: Learning Composable Hierarchical Control with Multiplicative Compositional

Policies. In Advances in Neural Information Processing Systems 32. Curran Associates,

Inc., 3681–3692.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. Ase:

Large-scale reusable adversarial skill embeddings for physically simulated characters.

ACM Transactions On Graphics (TOG) 41, 4 (2022), 1–17.
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.

2018b. Sfv: Reinforcement learning of physical skills from videos. ACM Transactions
On Graphics (TOG) 37, 6 (2018), 1–14.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021.

Amp: Adversarial motion priors for stylized physics-based character control. ACM
Transactions on Graphics (ToG) 40, 4 (2021), 1–20.

Nancy S Pollard and Victor Brian Zordan. 2005. Physically based grasping control from

example. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 311–318.

Avinash Ranganath, Pei Xu, Ioannis Karamouzas, and Victor Zordan. 2019. Low di-

mensional motor skill learning using coactivation. In Proceedings of the 12th ACM
SIGGRAPH Conference on Motion, Interaction and Games. 1–10.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.

Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

Jingyu Shi, Rahul Jain, Hyungjun Doh, Ryo Suzuki, and Karthik Ramani. 2023. An

HCI-Centric Survey and Taxonomy of Human-Generative-AI Interactions. arXiv
preprint arXiv:2310.07127 (2023).

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion phases

for learning multi-contact character movements. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 54–1.

Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios Tzionas. 2020. GRAB: A

dataset of whole-body human grasping of objects. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16.
Springer, 581–600.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. 2017.

A deep hierarchical approach to lifelong learning in minecraft. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 31.

Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng.

2023. Calm: Conditional adversarial latent models for directable virtual characters.

In ACM SIGGRAPH 2023 Conference Proceedings. 1–9.
Hado P Van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver.

2016. Learning values across many orders of magnitude. Advances in neural
information processing systems 29 (2016).

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-

berg, David Silver, and Koray Kavukcuoglu. 2017. Feudal networks for hierarchical

reinforcement learning. In International conference on machine learning. PMLR,

3540–3549.

Chen Wang, Haochen Shi, Weizhuo Wang, Ruohan Zhang, Li Fei-Fei, and C Karen Liu.

2024c. Dexcap: Scalable and portable mocap data collection system for dexterous

manipulation. arXiv preprint arXiv:2403.07788 (2024).
Jiashun Wang, Jessica Hodgins, and Jungdam Won. 2024a. Strategy and skill learning

for physics-based table tennis animation. In ACM SIGGRAPH 2024 Conference Papers.
1–11.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

http://mocap.cs.cmu.edu/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/1707.06347

233:14 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

Ruocheng Wang, Pei Xu, Haochen Shi, Elizabeth Schumann, and C. Karen Liu. 2024d.

FürElise: Capturing and Physically Synthesizing Hand Motions of Piano Perfor-

mance. In SIGGRAPH Asia 2024 Conference Papers (SA ’24). Association for Comput-

ing Machinery, New York, NY, USA, Article 77, 11 pages.

WenjiaWang, Liang Pan, Zhiyang Dou, Zhouyingcheng Liao, Yuke Lou, Lei Yang, Jingbo

Wang, and Taku Komura. 2024b. SIMS: Simulating Human-Scene Interactions with

Real World Script Planning. arXiv preprint arXiv:2411.19921 (2024).
Yinhuai Wang, Jing Lin, Ailing Zeng, Zhengyi Luo, Jian Zhang, and Lei Zhang. 2023.

Physhoi: Physics-based imitation of dynamic human-object interaction. arXiv
preprint arXiv:2312.04393 (2023).

Yangang Wang, Jianyuan Min, Jianjie Zhang, Yebin Liu, Feng Xu, Qionghai Dai, and

Jinxiang Chai. 2013. Video-based hand manipulation capture through composite

motion control. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–14.
Yufu Wang, Ziyun Wang, Lingjie Liu, and Kostas Daniilidis. 2025. TRAM: Global Tra-

jectory and Motion of 3D Humans from in-the-wild Videos. In European Conference
on Computer Vision. Springer, 467–487.

Yinhuai Wang, Qihan Zhao, Runyi Yu, Ailing Zeng, Jing Lin, Zhengyi Luo, Hok Wai

Tsui, Jiwen Yu, Xiu Li, Qifeng Chen, et al. 2024e. Skillmimic: Learning reusable

basketball skills from demonstrations. arXiv preprint arXiv:2408.15270 (2024).
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A scalable approach to

control diverse behaviors for physically simulated characters. ACM Transactions on
Graphics 39, 4 (2020), 33–1.

ZhenWu, Jiaman Li, and CKaren Liu. 2024. Human-object interaction from human-level

instructions. arXiv preprint arXiv:2406.17840 (2024).
Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei Zhang, Bo Dai, Dahua Lin,

and Jiangmiao Pang. 2023. Unified human-scene interaction via prompted chain-of-

contacts. arXiv preprint arXiv:2309.07918 (2023).
Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. 2020. Allsteps:

curriculum-driven learning of stepping stone skills. In Computer Graphics Forum,

Vol. 39. Wiley Online Library, 213–224.

Zhaoming Xie, Jonathan Tseng, Sebastian Starke, Michiel van de Panne, and C Karen

Liu. 2023. Hierarchical planning and control for box loco-manipulation. Proceedings
of the ACM on Computer Graphics and Interactive Techniques 6, 3 (2023), 1–18.

Pei Xu and Ioannis Karamouzas. 2021. A GAN-Like Approach for Physics-Based

Imitation Learning and Interactive Character Control. Proc. of the ACM on Computer
Graphics and Interactive Techniques 4, 3 (2021).

Pei Xu, Xiumin Shang, Victor Zordan, and Ioannis Karamouzas. 2023a. Composite

Motion Learning with Task Control. ACM Transactions on Graphics 42, 4 (2023).
Pei Xu and Ruocheng Wang. 2024. Synchronize Dual Hands for Physics-Based Dexter-

ous Guitar Playing. In SIGGRAPH Asia 2024 Conference Papers (SA ’24). Association
for Computing Machinery, New York, NY, USA, Article 143, 11 pages.

Pei Xu, Kaixiang Xie, Sheldon Andrews, Paul G. Kry, Michael Neff, Ioannis Karamouzas,

and Victor Zordan. 2023b. AdaptNet: Policy Adaptation for Physics-Based Character

Control. ACM Transactions on Graphics 42, 6 (2023).
Zeshi Yang, Kangkang Yin, and Libin Liu. 2022. Learning to use chopsticks in diverse

gripping styles. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–17.
Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. 2022. ControlVAE: Model-

Based Learning of Generative Controllers for Physics-Based Characters. ACM Trans.
Graph. 41, 6, Article 183 (2022).

Heyuan Yao, Zhenhua Song, Yuyang Zhou, Tenglong Ao, Baoquan Chen, and Libin

Liu. 2023. MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete

Representations. arXiv preprint arXiv:2310.10198 (2023).
Yuting Ye and C Karen Liu. 2012. Synthesis of detailed hand manipulations using

contact sampling. ACM Transactions on Graphics (ToG) 31, 4 (2012), 1–10.
Zhiqi Yin, Zeshi Yang, Michiel Van De Panne, and KangKang Yin. 2021. Discovering

diverse athletic jumping strategies. ACM Transactions on Graphics (TOG) 40, 4 (2021),
1–17.

Kevin Zakka, Philipp Wu, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng,

Sumeet Singh, Yuval Tassa, Pete Florence, Andy Zeng, and Pieter Abbeel. 2023.

RoboPianist: Dexterous Piano Playing with Deep Reinforcement Learning. In Con-
ference on Robot Learning (CoRL).

Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin

Peng, and Kayvon Fatahalian. 2023. Learning Physically Simulated Tennis Skills

from Broadcast Videos. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–14.
Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai. 2013. Robust realtime

physics-based motion control for human grasping. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 1–12.

Qingxu Zhu, He Zhang, Mengting Lan, and Lei Han. 2023. Neural categorical priors for

physics-based character control. ACM Transactions on Graphics (TOG) 42, 6 (2023),
1–16.

A Implementation Details
We perform control over the seven phases (see Figure 2) during

basketball games through six primitive policies, where defending be-

haviors are considered as special stances during locomotion and are

integrated with a locomotion policy, plus two intermediate policies

of gathering for shooting and passing respectively. All the primitive

policies are trained under a multi-objective learning framework for

physics-based character control using reinforcement learning [Xu

et al. 2023a]. The system architecture for primitive policy learning is

shown in Figure 4. For motion imitation, we utilize partially observ-

able (hands-only or body-only) reference motions collected from

different sources, and combine the usage of basketball-playing mo-

tions with non-basketball-playing motions for locomotion during

dribbling. In contrast to previous work [Wang et al. 2024e] using

detailed full-body motions with ball trajectories for skill learning,

our approach employs a GAN-like architecture [Xu and Karamouzas

2021] and enables motion imitation from unstructured sources to

achieve more flexible results of motion synthesis without needing

pre-collected or generated [Liu and Hodgins 2018] ball trajecto-

ries for reference. For adaptation to primitive policies during the

training for the policy transition, we use the fine-tuning approach

from AdaptNet [Xu et al. 2023b]. This approach adapts a pretrained

policy through latent space manipulation, and allows introducing

new context input during adaptation.

We use PPO [Schulman et al. 2017] as the backbone reinforcement

learning algorithm and take the Adam optimizer [Kingma and Ba

2017] to perform network optimization for policy training. The

hyperparameters used for policy training are listed in Table S1 and

the network structures are shown in Figure S1. The optimization

function for each primitive policy learning can be written as

maxE𝑡

[∑︁
𝜅
𝑤𝑘𝐴𝑡,𝑘 log𝜋 (a𝑡 |s𝑡)

]
(S1)

where𝐴𝑡,𝑘 is the standardized advantage that is estimated according

to the achieved reward of each objective 𝑘 , and𝑤𝑘 is an associated

weight. The number of objectives and the associated weights differ

depending on the given task, which are summarized in Table S2.

Following previous literature [Xu and Karamouzas 2021], the

imitation-related reward is obtained through a discriminator ensem-

ble 𝐷 using hinge loss [Lim and Ye 2017]:

𝑟
imit,𝑖
𝑡 (ō𝑖𝑡 , ō𝑖𝑡+1

) = 1

𝑁

𝑁∑︁
𝑛=1

Clip

(
𝐷𝑖
𝑛 (ō𝑖𝑡 , ō𝑖𝑡+1

),−1, 1
)
, (S2)

where the subscript 𝑖 indicates different imitation objectives. Most

of our policies have two imitation objectives for hand-only and body

imitation (see Table S2). Therefore, instead of using a full observation

to the character, we use ō𝑖𝑡 and ō𝑖𝑡+1
to represent partially observ-

able states of the character for the corresponding discriminator. We

employ an ensemble of 𝑁 discriminators (𝑁 = 32 in our implemen-

tation) for each imitation objective and the discriminator is trained

to minimize the hinge loss with gradient penalty [Gulrajani et al.

2017]. We refer to the previous literature [Xu and Karamouzas 2021]

for details.

For the value network, we employ a multi-head network structure

and train it for the multiple objectives of each primitive policy. We

employ the technique of PopArt [Van Hasselt et al. 2016] to perform

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:15

 log σt

GRU

 ot gt

 μt

FC

(1024)

FC

(512)

FC 
(256)
FC 

(256)

FC 2

(76)

×

(a) Policy Network

GRU

 ot gt

 v1 vn

FC

(1024)

FC 
(n)

FC

(512)

FC 
(256)
FC 

(256)

…

(b) Value Network

GRU

 ōt

 rDi

t

FC

(256)

FC 
(128)

…

 ōt+1

FC 
(32)

(c) Discriminator Network

Fig. S1. Network structures where the input state s𝑡 includes g𝑡 as the goal
state input and o𝑡 as the observation to the character in the last two frames,
and ō𝑡 and ō𝑡+1 represents the partial observation to the character in two
consecutive frames. We use ⊕ denoting the add operator and ⊖ denoting
the average operator. The state encoder consists of blocks in green, where a
GRU encoder is employed for pose state encoding temporally, and a two-
layer MLP encoder is employed for goal state encoding. The value network
is a multi-head network whose output has a dimension of 𝑛 depending on
the number of objectives in a given task. We have 𝑛 = 4 for the dribbling
policy, 2 for passing and shooting policies, and 3 for the others (cf. Table S2).

Table S1. Hyperparameters. The number of simulated environments would
be doubled or tripled during policy transition learning involving multiple
primitive policies.

Parameter Value

policy network learning rate 5 × 10
−6

critic network learning rate 1 × 10
−4

discriminator learning rate 1 × 10
−5

reward discount factor (𝛾) 0.95

GAE discount factor (𝜆) 0.95

surrogate clip range (𝜖) 0.2

gradient penalty coefficient (𝜆𝐺𝑃
) 10

number of PPO workers (simulation instances) 512

PPO replay buffer size 4096

PPO batch size 256

PPO optimization epochs 5

discriminator replay buffer size 8192

discriminator batch size 512

value normalization on the multiple outputs of a value network. The

normalized state value associated with the task reward is also used

for intermediate policy learning (see Section 5) or for the preceding

policy adaptation in the scene without the intermediate policy (e.g.,

catching to shooting and catching to passing).

Figure S2 shows the simulated character and the dimensions

of the basketball court. The character has 57 body links and 26

controllable joints with 76 degrees of freedom. This results in a state

space s𝑡 ∈ R2×57×13
including the character’s position, orientation,

and linear and angular velocities of each body link in the last two

historical frames. For ball control, we only take into account the

Table S2. Objective weights for primitive policy training. A simple weight
choice of 0.2, 0.1 and 0.7 (for body imitation, hand imitation, and goal-
directed task, respectively) works in most cases. The listed weights are fine-
tuned for fast task learning with minimal compromise in motion imitation
performance. The rebounding policy use the same weights as the catching
policy.

Dribble Shoot Pass Catch Gather Locomotion

Body imit. 0.2 0.4† 0.2† 0.08 0.2 0.25

Hand imit. 0.1 - - 0.02 0.1 0.15

Task 0.7∗ 0.6 0.8 0.9 0.7 0.6

∗
dynamic weights for navigation and dribbling (see Section A.1).

†
full-body with hand

15m

6.75m

5.8m

0.9m

0.49m

0.45m

1.83m

0.305m

0.914m

3.05m

0.1152m
0.56kg

1.7m

1.04m

0.91m

0.11m0.615m

DoFs:
34 + 21 × 2

body fingers

Fig. S2. Dimensions of the basketball court and character in our implemen-
tation. Our settings follow the standard of Olympic basketball games for
women. The character has a normal height and intends to imitate our source
motions collected from non-professional basketball players.

ball’s latest dynamics without historical information and ignore

its orientation given its round shape. This leads to a space of R9
,

including the ball’s position, and linear and angular velocities, in

the goal state vector g𝑡 , except for the locomotion policy which does

not need ball state information. Depending on the given task, g𝑡
could change to include additional information, for example, target

velocity for locomotion, hoop positions relative to the character,

pivoting foot, and dribbling state of the ball, which will be elaborated

in the following subsections. All joints in our implementation are

controlled through a PD servo. The policy network outputs the

target posture to the PD servo and leads to an action space a𝑡 ∈
R76

. We use IsaacGym [Makoviychuk et al. 2021] as our physics

simulation engine. All policies run at 30Hz, while the simulation

runs at 120Hz.

A.1 Dribbling Policy
Besides two imitation objectives, the dribbling policy has two goal-

directed rewards for velocity-controlled navigation and dribbling,

respectively.

The navigation reward is defined based on the error between

the character’s current horizontal velocity v and the target velocity

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:16 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

vtarget ∈ R2
:

𝑟nav = exp

(
− 2

max{1, | |vtarget | |2}
| |v − vtarget | |2

)
. (S3)

The target velocity is given to the policy as part of the goal state in

the form of velocity direction and magnitude. During training, the

target velocity is generated randomly with a speed sampled in the

range between 0 and 4m/s. To help train in-place dribbling motions,

there is a chance around 20% to draw a zero target velocity.

For dribbling, we perform violation detection to check if there is

any invalid contact between the ball and the character’s body links

other than the hands. To prevent consecutive dribbling performed in

a row before the ball drops on the ground, we include an additional

0/1 variable 𝑐dribble with the ball state to indicate if the ball currently

should be dribbled or not. Along with the three goal state variables

from the navigation objective, this leads to a goal state gdribble𝑡 ∈ R13

in total for navigation while dribbling. The reward function for

dribbling is defined as

𝑟dribble = 0.6𝑟hand + 0.4𝑟sp + 0.5𝐼dribble (0.2 + 0.8𝑟fingers) . (S4)

Specially, 𝑟dribble = −1 if any violation is detected.

The term 𝑟hand, as shown in Figure S3, measures the distance

between the character’s hand and the ball, encouraging the character

to position their hands with palm direction facing toward the ball:

𝑟hand =


exp

(
−2| |p𝜅

palm
+ 𝑅balld𝜅

plam
− pball | |

)
if 𝑐dribble = 1, i.e., the ball should be dribbled,

exp

(
−5| |min𝑎>0 p𝜅

palm
+ 𝑎d𝜅

plam
− pball | |2

)
otherwise,

(S5)

where p𝜅
palm

and pball are the positions of the palm and ball with

𝜅 ∈ {left, right} to indicate the target hand, d𝜅
palm

is the facing

direction of the palm, and 𝑅ball is the radius of the ball. In the first

case, when the ball should be dribbled, the reward encourages the

palm to face the center of the ball while reaching for it, preventing

dribbling with the back of the hand. In the second case, where the

basketball has been dribbled and has not yet rebounded from the

ground, the reward computes the projection of pball on the palm

facing direction dplam. It only encourages the palm to face toward

the ball rather than reaching the ball. The reward in the second

case uses a squared error and is more tolerant than the one in the

first case using an absolute error. It allows the palm to roughly face

toward the ball, while the reward in the first case expects the palm

to contact with the ball as closely as possible to generate human-like

hand poses to interact with the ball. The value of 𝑎 can be found by

𝑎 = max{0, (pball − ppalm) · dplam}. (S6)

We decide 𝜅 by the nearest hand to the ball, i.e.

𝜅 = arg min

𝜅
| |p𝜅

palm
− p𝜅

ball
| | (S7)

The term of 𝑟sp in Eq. S4 measures the vertical speed of the ball

and checks if the ball can rebound to at least the height of the pelvis.

𝑟sp = min{1, |𝑣ball/𝑣target |} (S8)

where 𝑣ball is the current vertical speed of the ball. The target speed

𝑣target is computed according to the current height of the character’s

pelvis link ℎpelvis. It takes into account the restitution coefficient 𝑒

hand

for dribbling
r

hand
r

after dribblingpalmd

0 2 4 6 8
×108

0.0

0.5

1.0

D
ri

b
b

le
M

is
si

n
g

R
a

te

0 2 4 6 8

of Samples
×108

0.0

0.5

1.0

N
a

vi
g

a
ti

o
n

R
ew

ar
d

fixed objective weights

dynamic weights (ours)

Fig. S3. Left: demonstrations of reward computation for ball dribbling before
(orange) and after (blue) a dribble happens. Right: comparison of learning
performance using dynamic task objective weights and that using fixed
objective weights.

ALGORITHM S1: Ball Dribbling State Detection

1 if 𝑣𝑡ball − 𝑣𝑡−1

ball < Δ𝑉 − 0.01 and 𝑣𝑡ball < 0 then
2 𝐼dribble = 1 ; // A dribble happens.

3 𝑐dribble = 0 ; // Another dribble should not start.

4 else
5 𝐼dribble = 0

6 if 𝑣𝑡−1

ball < 0 and 𝑣𝑡ball > 0 then
// Ball bounces up from the ground.

// Count the dribble missing rate.

7 if 𝑐dribble = 1 then
8 𝑛−

dribble
= 𝑛−

dribble
+ 1 ; // Missing one dribble.

9 else
10 𝑛+

dribble
= 𝑛+

dribble
+ 1

11 𝑐dribble = 1 ; // Another dribble is allowed.

between the ball and the ground to compute the rebound height if

the ball is moving toward the ground vertically (i.e., 𝑣ball < 0), or

consider only the impact from gravity if the ball is moving upward:

𝑣target =

{√︁
−2𝑔(ℎpelvis − ℎball) if 𝑣ball > 0,√︁
−2𝑔(ℎpelvis/𝑒2 − ℎball) otherwise,

(S9)

where 𝑔 = −9.81𝑚/𝑠2
is the gravitational acceleration and 𝑒 = 0.875

is the restitution coefficient between the foot and ground. When

ℎpelvis < ℎball or ℎpelvis/𝑒2 < ℎball, we have 𝑟sp = 1. The restitution

coefficient is decided by measuring the bounce height of the ball,

according to the basketball rules, in the physics simulator. It takes

into account the simulation error and is slightly different from the

physical quantity in the real world. In our experiments, we find that

the introduction of 𝑟sp is crucial for the policy to master continuous

dribbling behaviors.

The term of 𝐼dribble𝑟fingers in Eq. S4 measures the finger pose when

dribbling happens, where 𝐼dribble is a 0/1 variable to indicate if a

dribble happens. It is equal to 1 if the ball is pushed downward by a

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:17

Fig. S4. Demonstrations of our dribbling policy trained using partially observable motion data. The dribbling policy is trained with unstructured motion data
collected from multiple sources without ball trajectories. The character controlled by the policy can interact with the ball validly using hands and support
interactive control by giving arbitrary target velocities with a valid speed in the range between 0m/s (inclusive) and 5m/s. Bottom: close-up pictures captured
during the character walking, running and in-place dribbling.

hand. The definition of 𝑟fingers can be written as

𝑟fingers = exp
©­«−10

∑︁
𝑓 ∈F𝜅

|p𝜅
f
− pball | − 𝑅ball

ª®¬ (S10)

where F 𝜅
is the set all fingertips plus the palm of the hand 𝜅, and

p𝜅
f
is the global position of a fingertip or the palm center in 3D

space. This reward encourages the hand to dribble the ball with all

fingertips in contact with the ball.

Instead of relying on accurate contact information, we use a

simple heuristic rule to decide the ball’s dribbling states, as shown

in Algorithm S1, where Δ𝑉 = 𝑔/FPS is the velocity change of free-

falling objects in the physics simulator, given that IsaacGym uses

Euler’s method for integration.

Since we do not have references of ball trajectories, the ball is

initialized in front of the character randomly with a distance from

0.5 to 0.8m. If the character falls down, a termination reward of −25

will be given, and the simulation episode terminates. For invalid

dribbling behaviors or violations, however, we adopt a soft termina-

tion strategy to re-initialize the position of the ball in front of the

character and assign a penalty reward of −1 to the policy, while the

simulation episode does not terminate. By such, we avoid the policy

termination occurring too often at the beginning of training, which

could prevent the policy from even learning to walk.

Additionally, we take a dynamic weighting strategy for the drib-

bling policy training. Since dribbling is much more difficult than

locomotion and there is a potential conflict between the two tasks,

to balance the two task objectives, a simple solution is to assign a

larger weight in Eq. S1 to the dribbling task, given its higher pri-

ority. However, this approach can negatively impact the learning

of locomotion. To address this issue, we set a lower weight to the

locomotion objective initially to let the policy learn more about drib-

bling at the beginning of training, but increase it progressively as

the success rate of dribbling (𝑝dribble) increases, namely, the dribble

missing rate (1 − 𝑝dribble) decreases. In our implementation, 𝑝dribble
is counted by moving average based on the policy’s performance in

training rollout (8 simulation steps with 512 parallel environments)

with a fading coefficient of 0.9 on the past performance, i.e.

𝑝dribble ← 0.9𝑝dribble + 0.1
𝑛+
dribble

𝑛−
dribble

+ 𝑛+
dribble

(S11)

where 𝑛−
dribble

and 𝑛+
dribble

are the number of counted successful and

missed dribbles (cf. Algorithm S1). The weight for the locomotion

objective is set dynamically and non-decreasing during training

based on the dribble-missing rate through

𝑤nav ← 0.2 + 0.5 max {exp (−10(1 − 𝑝dribble)) ,𝑤nav} (S12)

with an initial value of 𝑤nav = 0.2, and the weight for the dribble

objective is set by

𝑤dribble = 0.7 −𝑤nav . (S13)

The two goal-directed tasks have a total weight of 0.7, and the total

weight of the two motion imitation objectives is 0.3. In Figure S3,

we compare the learning performance using our dynamic weight

strategy and that using fixed weights (0.2 for navigation and 0.5 for

dribbling, i.e., the initial weights for the dynamic weight strategy).

From the figure, we can see that as the dribble missing rate decreases,

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:18 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

Fig. S5. Top: reference motions of jump shooting without ball trajectories
but a manually decided initial position of the ball. Bottom: close look of the
learned shooting motions.

there is no performance loss when we reduce the weight of dribbling

(blue). However, the increase in the associated locomotion weight

makes the learning of navigation more effective.

A.2 Shooting Policy
For the shooting policy, we have a full-body (including hands) imi-

tation objective and a goal-directed reward that measures the shot

accuracy and ball-holding performance before the ball is shot out.

Besides the ball state, the shooting policy also takes the horizontal

position of the hoop relative to the character as the goal state. This

leads to a goal state vector gshoot𝑡 ∈ R11
.

Due to missing ball trajectory reference, we manually set the

ball’s initial position near the character’s hand in each of the three

reference motions that we have for policy learning, as shown in

Figure S5. This initialization scheme makes the ball easily catchable

for the character through motion imitation and avoids unexpected

penetrations between the ball and character caused by random

initialization. Nevertheless, such an initialization scheme lets the

trained policy see only a very limited set of the ball states and thus

makes it sensitive to the initial pose of the ball during execution.

Each training episode will end after 60 frames (2s) and terminate if

the ball has not been released with two hands holding the ball after

40 frames.

The reward for shooting encourages the character to first hold

and then lift the ball using two hands before shooting the ball out,

like a human player would do for a jumping shoot:

𝑟shoot =

{
0.5𝑟hands + 𝐼up𝑟hold before the ball is released,

𝑟release + exp(−0.25| |p̂ball − phoop | |) otherwise.

(S14)

Similar to the first case in Eq. S5, 𝑟hands encourages the hand to

approach the ball with the palm facing toward the ball. However,

while dribbling uses only one hand, 𝑟hands here takes into account

the two hands at the same time:

𝑟hands = exp

(
−5

|𝜅 |
∑︁
𝜅

|p𝜅
palm
+ 𝑅balld𝜅

palm
− pball |

)
(S15)

where 𝜅 ∈ {left, right} and |𝜅 | = 2. 𝐼up = 1 if the ball is lifted

up compared to previous frames or 0 otherwise. 𝑟hold is similar to

Eq. S10, but measures the performance of two hands holding the

ball simultaneously. The definition of 𝑟hold can be written as

𝑟hold = exp
©­«−20

∑︁
𝜅

∑︁
𝑓 ∈F𝜅

|p𝜅
f
− pball − 𝑅ball |

ª®¬ . (S16)

By multiplying 𝑟hold by 𝐼up, we expect that the character could lift

the ball with fingers and palms in close contact with the ball before

shooting it out.

In the second case of Eq. S14, 𝑟release is defined as

𝑟release = ℎrelease/ℎhoop (S17)

where ℎrelease is the height of the ball when it is held by the hand just

before being released. This reward term encourages the character to

shoot the ball from a higher position rather than directly throwing

the ball out. In the last term, p̂ball is the estimated minimal distance

between the ball flying trajectory and the hoop on the horizontal

plane at the hoop height. Figure S6 shows how the points are chosen

given the ball’s projectile decided by its current linear velocity. We

estimate p̂ball under the assumption that the ball is only affected

by gravity, and then correct the estimation based on the actual

simulated result of the ball state.

Though the initial posture is fixed, the character will be randomly

put in a ring area around the hoop with an inner radius of 2.5m

and an outer radius of 7.5m, as shown in Figure 8. The initial facing

direction will also be adjusted with some randomness to ensure that

the character can face the hoop roughly (with a maximal error of

20
◦
). As discussed in the experiment section, the shooting policy is

sensitive to the initial posture and ball state, but can perform shots

with high accuracy in the effective area.

We do not perform violation detection when training the vanilla,

primitive policy of shooting. The major violation that could happen

during the phases from ball catching to jump shooting is traveling,

which barely occurs with effective full-body imitation of the ref-

erence motions starting with a jump-ready pose. However, during

adaptation learning for policy transition from dribbling or catch-

ing, traveling could happen very frequently, given the character

dynamic states. In that case, we introduce an additional variable in

the goal state vector to indicate the pivoting foot for the policy to

avoid traveling. The details of traveling detection will be elaborated

in Section A.8.

A.3 Passing Policy
The passing task is very similar to shooting with the major dif-

ference in (1) the goal state and (2) the falling points chosen for

reward computation. The goal state for passing includes the ball

state and the target position of passing in the 3D space relative

to the character’s root link. This leads to a goal state gpass𝑡 ∈ R12
.

Similar to the training of the shooting policy, an additional indicator

of the pivoting foot will be introduced into the goal state during

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:19

Fig. S6. The chosen points (yellow cross markers) on the ball projectile used
for reward computation for shooting (left) and passing (right) tasks. We
compute the 2D distance from the falling points on the horizontal plane
of the target (blue lines) or the 3D distance (cyan) from the top of the
projectile if the projectile is not high enough to reach the target height. For
the shooting task, we consider the falling point only. For the passing task,
we consider the two possible points where the projectile intersects with the
plane at the target height.

adaptation learning for policy transition, but not in the pre-training

phase of the primitive policy.

While during reward computation, the shooting task only takes

the valid falling point where the ball drops from a higher position

above the hoop, the passing task allows the ball to reach the target

position from any direction (see Figure S6). Ideally, we prefer to find

the closest position on the ball’s projectile to the target position

for reward computation. However, this will lead to an optimiza-

tion problem involving a cubic equation, which is not easy to solve.

Therefore, instead of finding the closest point in the 3D space, we

adopt a similar strategy of reward computation for the shooting pol-

icy, but consider the closest one from the two possible intersection

points of the ball’s projectile and the horizontal plane of the target

position for reward computation.

During training, the position of the passing target is chosen ran-

domly in a half ring area in front of the character with an inner

radius of 2.5m and an outer radius of 7.5m at a random height be-

tween 0.8 and 1.1m. During deployment for interactive control, the

chest position of the target character is chosen as the target position

of passing.

A.4 Catching Policy
The catching policy has the same goal state with the passing policy,

but the indicator variable for the pivoting foot is always introduced

to prevent traveling after ball catching. The goal state, therefore,

is gcatch𝑡 ∈ R13
. We refer to Section A.8 for details of traveling and

pivoting foot detection.

The catching reward is similar to the ball-holding reward used

for the shooting policy:

𝑟catch = 0.5𝑟 ′
hands

+ 𝑟hold − 𝐼traveling (S18)

where 𝐼traveling is a 0/1 indicator for foot traveling. The term 𝑟 ′
hands

is an extend to 𝑟hands in Eq. S15:

𝑟 ′
hands

= 0.3 exp(−𝑒hands) + 0.7𝑟hands (S19)

Fig. S7. Ball initialization for the training of the catching (left) and rebound-
ing (right) policies. The gray areas indicate the area where the ball will be
launched randomly. A falling point in the green area will be chosen ran-
domly to decide the initial velocity of the ball. The falling point is chosen
around the catching player while training the catching policy. During re-
bounding policy training, the character will be randomly placed at the front
direction (blue area) of the ball’s actual falling point (yellow cross marker)
after colliding, if there is, with the hoop and board.

where 𝑒hands =
1

|𝜅 |
∑

𝜅 |p𝜅palm+𝑅balld
𝜅
palm
−pball |. As the distance from

the hands/fingers to the ball may vary a lot during the catching

process, we take the trick from previous literature [Xu and Wang

2024], and use the sum of two exponential functions for reward

computation. This trick prevents it from falling into the saturation

range of an exponential function when the error is large, while

keeping the reward function sensitive when facing small errors.

To improve the training efficiency, the ball during training is ini-

tialized to fly towards the character roughly, such that the character

can try to catch the ball effectively. Figure S7 shows the area in gray

from which the initial position of the ball is randomly drawn. It is a

ring arc area in front of the character with an inner radius of 2.5m

and an outer radius of 7.5m. The angle of the arc is 120
◦
. The initial

height is randomly chosen from 0.8 to 1.1m. The target position is

randomly sampled from a circular area about the character with a

radius of 0.5m (green in the figure). The target height is -0.1m to

0.5m around the root height of the character. We consider the ball’s

traveling time as a random number between 0.3s (10 frames) and

0.83s (50 frames). The initial linear velocity of the ball is then de-

cided by the sampled initial position, target position, and traveling

time.

A.5 Rebounding Policy
The rebounding policy is similar to catching. They are trained using

exactly the same reference motions and goal-directed reward in

Eq. S18. However, while the catching policy faces the scenario where

the ball flies in the air barrier-freely, the rebounding policy faces the

scenario where the ball would collide with the hoop and/or board

and change its trajectory. To enable the policy to detect the potential

impacts from the collision, we use the goal state from the shooting

policy, which includes the hoop’s position besides the ball’s state.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:20 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

Fig. S8. Character controlled by our rebounding policy can perform re-
bounding in arbitrary positions around the hoop near the falling point.

Similarly to the training of the catching policy, we also introduce

the pivoting foot indicator in the goal state to prevent foot traveling.

Figure S7 shows how the ball is initialized for rebounding during

training. To emulate the pre-rebounding states of the ball, we run

additional simulation environments in parallel to collect ball trajec-

tories with falling points near the hoop. We procedurally shoot the

ball from the common shooting area (the gray area in the figure)

at a random height between 1.5m and 3m to the hoop range, as

shown by the green area in the figure, excluding the center of the

hoop. After collecting the falling trajectories of the ball, which may

collide with the hoop and/or board or just free-fall, we initialize the

character in front of the falling point (the blue area). The facing

direction of the character is roughly toward the ball’s horizontal

direction of velocity at a randomly sampled angle within 120
◦
and a

distance within 1m. We also constrain the ball’s maximal launching

speed to 3m/s horizontally and angle to 45
◦
. Since the whole flying

trajectory of the ball may be quite long, taking at most 2 seconds,

we cut the trajectory, and extract the ball pose in the last 20th frame

(2/3 seconds) before the ball drops at the hoop height as the ball

pose initialized together with the character for policy training.

Instead of mimicking certain pre-collected motions to catch the

ball with a fixed set of dynamic states, our trained policy can control

the character to perform rebounding in any valid position around

the ball’s falling point given an arbitrary initial state. Figure S8

exhibits some results of our rebounding policy. The character under

control can, in advance, predict the falling point of the ball after

colliding with the hoop and/or board, and adjust its pose for better

rebounding. The introduction of foot traveling detection prevents

the character from randomly moving after catching the ball. We

refer to our supplementary video for the animated results.

A.6 Gathering Policy
The gathering policy is not a completely independent policy. It is

introduced as the intermediate policy for transition purposes be-

tween dribbling and shooting, as described in Section 5. Besides the

shooting off the dribbling, we also adopt the same setup to train a

gathering policy for passing off the dribbling in our implementation.

Except for the common part of the ball state, the goal state differs de-

pending on the succeeding policy. In the shooting-off-the-dribbling

task, the goal state has the hoop position like the shooting policy but

with one more indicator for the pivoting foot to prevent traveling.

In the passing-off-the-dribbling task, the goal state is the pivoting

foot indicator plus the position of the passing target used for the

passing policy.

The reward function defined for the gathering policy is similar

to the reward for the shooting policy, but focuses only on the ball-

catching behaviors without the ball-releasing reward. Meanwhile,

for policy transition purposes (cf. Eq. 1), we utilize the state value

function from the adapted shooting policy (i.e. 𝜋+
shoot

) to guide the

character reaching a state preferred by the shooting policy. A sim-

ilar approach is used for the passing-off-the-dribbling task while

adapting the passing policy. We refer to Eq. 1 for the full reward

definition, where

𝑟pose = 0.3𝑟 ′
hands

+ 0.2𝑟orient + 𝑟hold − 𝐼traveling . (S20)

This reward is similar to the reward function for the catching pol-

icy (Eq. S18) but has one more term 𝑟orient measuring the facing

direction error of the character. 𝑟orient is computed by

𝑟orient = exp

(
−4

(
| arccos𝜃 |

𝜋

)
3

)
(S21)

where 𝜃 is the angle between the character’s pelvis (root) heading

direction and the horizontal direction from the character to the hoop

in the shooting-off-the-dribbling task and to the target position in

the passing-off-the-dribbling task.

During the gathering policy training, a dribbling policy runs

parallelly in another batch of simulation environments to produce

random initial states of the character and ball for the gathering

policy. While taking the produced local dynamics of the character

and ball, the character controlled by the gathering policy will be

teleported to a random position near the hoop in the same range

as the shooting policy training to perform ball gathering for shoot-

ing in the shooting-off-the-dribbling task. Based on the estimated

state value, we pass states of the gathering character and ball to

the succeeding policy for further adaptation. We will terminate the

episode without penalty if the ball is out of control (flying away or

rolling/bounding on the ground) within 40 frames (1.3s). A termina-

tion penalty (a reward of −25) will be given only when the character

falls down.

A.7 Defending and Locomotion Policy
We combine the locomotion and defending behavior into one policy.

The character is expected to perform locomotion when a horizontal

target velocity (vtarget ∈ R2
) is given, or to stretch his arms up, down

or horizontally in place according to the given command when no

target velocity is given, as shown in Figure S9. This leads to a goal

state gloco𝑡 ∈ R4
where three of the elements represent the target

velocity in the form of direction and magnitude, like that for the

dribbling policy, and an additional one for defensive pose indication.

The reward function is defined as:

𝑟loco =

{
𝑟nav if vtarget is given,

1 + 0.2 exp(−||v| |2) + 0.8𝑟style otherwise,

(S22)

where 𝑟nav is the navigation reward from Eq. S3. When no target

velocity is given, we want the character to stay in place by using

the 2nd reward case to minimize its horizontal linear velocity v.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:21

Fig. S9. Top: controllable locomotion with defensive stances. Bottom: Close
look at defensive behaviors corresponding to different arm stretching poses.
From left to right: block, screen, and defensive stance.

Instead of using a conditional discriminator [Dou et al. 2023; Tessler

et al. 2023] for defensive stance control we rely on the reward term

𝑟style to guide the stance styles for the policy. 𝑟style is defined mainly

according to to the arms’ stretching state:

𝑟style =


𝑟block if blocking command is given,

𝑟screen if screening command is given,

𝑟defend otherwise.

(S23)

where

𝑟block = 0.25 max

𝜅
min{1, 𝜃𝜅

l
/0.16𝜋}

+ 0.75 max

𝜅
min{1, (𝜃𝜅

u
+ 0.212𝜋)/0.376𝜋},

𝑟screen = 0.25 min{1, (0.5 − ||pleft

palm
− pright

palm
| |)/0.3}

+ 0.75 min

𝑖∈𝑙,𝑢
min

𝜅
min{1, (0.4𝜋 − 𝜃𝜅

i
)/0.8𝜋},

𝑟defend = min

𝜅
min{1, (0.5𝜋 − |𝜃𝜅

u
|)/0.334𝜋)}.

(S24)

Those reward measures the vertical angle for the upper (𝜃𝜅
u
) and

lower (𝜃𝜅
l
) arms given𝜅 ∈ {left, right}, and encourages the character

to reach the desired arm stretching pose. For blocking, the character

obtains the maximal reward of 1 if any of the upper arms and lower

arms raise up more than 30
◦
at the same time. For screening, the

character obtains the maximal reward when the two hands are close

enough with a distance less than 0.2m, and all lower and upper arms

put down with a vertical angle more than 70
◦
. In the third case, the

character obtains the maximal reward if all upper arms are stretched

horizontally with a vertical angle within the range of ±30
◦
.

Because during training, the target velocity and arm stretching

commands are generated randomly with a higher proportion of

locomotion rather than staying in place, to balance the learning

of defending behaviors and locomotion, we start the training with

all environments generating only zero target velocity for defensive

behavior learning, and then progressively increase the proportion of

1cm

Fig. S10. Demonstrations of foot traveling detection. Left: a foot with points
contacting with ground (red circle) lifting up and dropping down would lead
to traveling if the foot is a pivoting foot, or will let the other foot become
the pivoting foot if the pivoting foot is undecided (two feet contacted with
the ground at the same time previously when the ball is caught). Right: foot
movement with at least one contacting point not changing is allowed (green
arrow), but the traveling will be triggered if all contacting points move by a
distance above 0.01m (red arrow) from the initial contacting points.

environments accepting dynamic target velocity, which also could

be zero. This approach allows the character to master the simple

defending poses first before learning locomotion. Additionally, we

adopt an adaptive sampling strategy to ensure the simulation steps

spent on the learning of three different defending poses are equal

roughly. During interactive control, the command of blocking and

screening is given by the user, while the default command for stand-

ing in place is the defensive stance.

A.8 Foot Traveling Detection
We perform traveling detection according to the pivoting foot rules

in real basketball games. In practice, however, traveling is mainly

decided visually. It allows the player to rotate around a foot (the

pivoting foot) rather than requiring that foot to be fixed on the

ground strictly while holding the ball. In our implementation, we

introduce additional tolerance to avoid a too rigorous detection of

traveling. Given that each foot in our character model is shaped as a

cuboid, we consider the four vertices on the bottom side of the foot

cube for contact detection. A contact is recorded if any of the four

vertices of a foot is less than 0.01m above the ground. Traveling

will be decided when the ball is holding and if (1) a pivot foot falls

back on the ground (from a non-contacting state to a contacting

state) with the ball held by the hands, or (2) a pivot foot moves with

all recorded contact points traveling more than 0.01m horizontally.

The tolerance given in the second rule is crucial for allowing the

character to perform pivoting where the body spins with one foot

contacting the ground. Figure S10 gives two examples of traveling

detection. In the right example, the movement along the green arrow

is allowed, since one contacting point (the left top corner of the

foot) is fixed and the movement is actually a rotation around that

contacting point. However, the movement along the red arrow, even

after moving along the green arrow first, is considered traveling, as

we perform traveling detection by measuring the movement of the

contacting points from the initial contact positions.

The pivoting foot rule in the basketball game treats the foot that

first touches the ground as the pivoting foot when or after the ball is

caught. The rule allows the player to pivot on either foot if two feet

are contacting the ground when catching the ball or touching the

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

233:22 • Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, and C. Karen Liu

ALGORITHM S2: Pivoting Foot and Traveling Detection

Input :𝑝𝑡−1 ∈ {−1, 0, 1, 2}: previous pivoting foot state, 𝑝0 = −1.

P,𝑚𝑓 , 𝑑𝑓 ,𝑇
𝑡
𝑓
, 𝑐𝑡

𝑓
from FootMovementDetection for

𝑓 ∈ {left foot, right foot}.
Output : traveling ∈ {true, false}: traveling state.

𝑝𝑡 : updated pivoting foot state.

1 traveling = false

2 if ball is not held by any hand then
3 𝑝𝑡 = −1 ; // Undefined pivoting foot.

4 P ← ∅ ; // Clear recorded contacting states.

5 𝑐𝑡
𝑓
= false, T𝑡

𝑓
= −4 ∀𝑓

6 else
7 𝑝𝑡 = 𝑝𝑡−1

8 if 𝑝𝑡 = −1 then
// No foot-ground contact was detected.

9 if 𝑐𝑡left foot and 𝑐
𝑡
right foot then

// Two feet contact ground simultaneously.

Either foot can be the pivoting foot.

10 𝑝𝑡 = 2

11 else if 𝑐𝑡left foot then
12 𝑝𝑡 = 0 ; // Left foot pivots.

13 else if 𝑐𝑡right foot then
14 𝑝𝑡 = 1 ; // Right foot pivots.

15 else if 𝑝𝑡 == 2 then
// Pivoting foot is not decided.

// Two feet contacted ground simultaneously

after ball catching.

16 if 𝑑𝑓 for any 𝑓 ∈ {left foot, right foot} then
17 traveling = true

18 else if𝑚𝑓 for all 𝑓 ∈ {left foot, right foot} then
19 traveling = true

20 else if 𝑐𝑡left foot is false or (𝑐
𝑡
right foot is true and𝑚left foot) then

// Left foot moves and right foot becomes the

pivoting foot

21 𝑝𝑡 = 1

22 traveling =𝑚right foot

23 else if 𝑐𝑡right foot is false or (𝑐
𝑡
left foot is true and𝑚right foot)

then
// Right foot moves and left foot becomes the

pivoting foot

24 𝑝𝑡 = 0

25 traveling =𝑚left foot

26 else if 𝑝𝑡 == 0 then
// Pivoting foot is the left foot.

27 traveling =𝑚left foot or 𝑑left foot

28 else if 𝑝𝑡 == 1 then
// Pivoting foot is the right foot.

29 traveling =𝑚right foot or 𝑑right foot

if 𝑐 𝑓 and𝑇𝑓 > 𝑡 − 4 for all 𝑓 ∈ {left foot, right foot} then
// 4-frame tolerance to detect if two foot

contact ground simultaneously.

30 𝑝𝑡 = 2

ground simultaneously after catching the ball. In the latter case, once

a foot lifts up, the other foot will become the pivoting foot. However,

ALGORITHM S3: Foot Movement Detection

Input :𝑡 : the current timestep.

P𝑡−1: an array or table recording the contacting position of

each foot link vertex 𝑖 . P ← ∅ during initialization.
𝑇 𝑡−1

𝑓
for 𝑓 ∈ {left foot, right foot}: recording of the

timestep at which the contact is detected for each foot

link 𝑓 .𝑇𝑓 = −4 during initialization for a 4-frame tolerance

to detect two-foot pivoting.

p𝑖 ∈ R3
: the current Cartesian coordinate of each foot link

vertex 𝑖 in the global space. The third element, p𝑖 [2],
represents the vertical height above the ground.

𝑐𝑡−1

𝑓
∈ {true, false}: the previous foot-ground contacting

state.

Output :𝑐𝑡
𝑓
∈ {true, false}: the ground contacting state of each foot.

𝑚𝑓 ∈ {true, false}: the movement state of each foot.

𝑑𝑓 ∈ {true, false}: the dropping state of each foot.

P𝑡 : updated positions of contacting vertices.

𝑇 𝑡
𝑓
: updated timestep recording of contacting foot.

1 for each contacting vertex 𝑖 in C do
2 if | P [𝑖] [0] − p𝑖 [0] | > 0.01 or | P [𝑖] [1] − p𝑖 [1] | > 0.01 then
3 vertex 𝑖 moves

end
4 for each 𝑓 ∈ {left foot, right foot} do
5 𝑐 𝑓 = false, 𝑑𝑓 = false,𝑚𝑓 = false

6 if p𝑖 [2] < 0.01 for any vertex 𝑖 belongs to the foot 𝑓 then
7 𝑐𝑡

𝑓
= true ; // Foot 𝑓 is contacting ground.

8 if 𝑐𝑡−1

𝑓
is false then

9 𝑑𝑓 = true ; // Foot 𝑓 drops on ground.

10 if vertex 𝑖 moves for all 𝑖 belongs to the foot 𝑓 then
11 𝑚𝑓 = true ; // Foot 𝑓 moves.

end
12 P𝑡 ← P𝑡−1,𝑇

𝑡
𝑓
← 𝑇 𝑡−1

𝑓

13 for each 𝑓 ∈ {left foot, right foot} do
14 for each vertex 𝑖 belongs to the foot 𝑓 do
15 if 𝑖 not in P and p𝑖 [2] < 0.01 then

// Record the first-time contacting

coordinate for the vertex.

16 P𝑡 [𝑖] = p𝑖
17 if 𝑇 𝑡

𝑓
< 0 then

// Record the first-time contacting

timestep for the foot.

18 𝑇 𝑡
𝑓
= 𝑡

end
end

it is too rigorous to perform the detection of two-foot pivoting at the

time scale of 30Hz. Therefore, we introduce an additional 4-frame

tolerance. If two feet contact the ground within 4 frames after the

catch, we consider that the two feet contact simultaneously, and

either of the two feet can be treated as the pivoting foot (i.e. the

undecided state of the pivoting foot).

For reference, we elaborate on our algorithm for pivoting foot

and traveling detection in Algorithms S2 and S3.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

Learning to Ball: Composing Policies for Long-Horizon Basketball Moves • 233:23

Facing Opposite Left Orthogonal Right Orthogonal Overall

0.0

0.2

0.4

0.6

0.8

1.0

Fig. S11. Heatmap of the shot percentage of our system when the character dribbles at different approaching directions towards the hoop.

0 2 4 6

of Samples
×108

0.0

0.5

1.0

N
or

m
a

li
ze

d
R

ew
ar

d

Shoot

0 2 4 6

of Samples
×108

0.0

0.5

1.0

Pass

0 2 4 6

of Samples
×108

0.0

0.5

1.0

Catch

0.0 0.5 1.0

of Samples
×109

0.0

0.5

1.0

Rebound

0 2 4 6

of Samples
×108

0.0

0.5

1.0

Locomotion+Defend

Fig. S12. Curves of the primitive policy training performance. The shaded ranges show the performance over three training trials.

B Transition Policy Training and Composing
While the primitive policies can be trained independently at the

same time, our presented training scheme for policy transition

(Type B and C in Figure 3) requires the preceding, succeeding, and

intermediate (if there is) policies to be trained together to learn the

transition. In our implementation, we run 512 simulation environ-

ments to train each primitive policy. During the training for policy

transition, we run 512-by-𝑛 environments at the same time where

𝑛 = 2 for mutual adaptation and 𝑛 = 3 for the scheme using interme-

diate policy. Specially, for the rebounding policy, an additional batch

of 512 environments run in parallel to collect ball trajectories from

which the the pre-rebounding ball state is extracted to initialize

the ball for the character to rebound (cf. Section A.5). We perform

policy composition for the case where the transition should be done

automatically but the transitional states between two policies are

ill-defined, like the dribbling to shooting/passing transition through

a gathering policy (Type C transitions), and the catching to shoot-

ing transition (Type B transitions). During interactive control, for

example, we will call for the composed catching-to-shooting policy

if catching and shooting commands are given at the same time. If

the command of catching and shooting is given sequentially, the

system will perform catching using the catching-passing adapted

policy first, and then, after receiving the shooting command, call the

shooting-off-the-dribbling policy as the default executor of shooting.

C Additional Results
Figure S11 shows additional visualization results of the shot per-

centage of the policy trained by our system. This figure is the visu-

alization of the number reported in Table 2. In Figure S12, we show

the learning performance of the primitive policies, in terms of the

Fig. S13. A demonstration of passing off the dribbling. Similar to the
shooting-off-the-dribbling example, the introduced intermediate, gathering
policy can adjust the body pose according to the passing target’s position
for seamless transition to passing.

task reward. The performance of the dribbling policy is shown in

Figure S3. For the locomotion+defend case, the policy is trained for

in-place defensive stances initially, and the ratio of locomotion train-

ing is increased gradually as the training goes on (cf. Section A.7).

This leads to a performance drop at the early training stage with

the introduction of locomotion, as shown in the right-most subplot

in the figure.

ACM Trans. Graph., Vol. 44, No. 6, Article 233. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Learning from Unstructured Motions
	4.1 Unstructured Data Sources
	4.2 Learning to Dribble
	4.3 Learning to Shoot

	5 Learning Intermediate Subtasks
	6 Composing Policies for Long-Horizon Tasks
	7 Other Skill Transitions
	8 Experiments
	8.1 Data Preprocessing
	8.2 Quantitative Evaluation
	8.3 Qualitative Analysis

	9 Ablation Studies
	9.1 Intermediate Policy Training
	9.2 High-Level Routing Policy

	10 Conclusion
	Acknowledgments
	References
	A Implementation Details
	A.1 Dribbling Policy
	A.2 Shooting Policy
	A.3 Passing Policy
	A.4 Catching Policy
	A.5 Rebounding Policy
	A.6 Gathering Policy
	A.7 Defending and Locomotion Policy
	A.8 Foot Traveling Detection

	B Transition Policy Training and Composing
	C Additional Results

